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Abstract

We develop new quasi-experimental tools to understand algorithmic discrimination and
build non-discriminatory algorithms when the outcome of interest is only selectively ob-
served. These tools are applied in the context of pretrial bail decisions, where conventional
algorithmic predictions are generated using only the misconduct outcomes of released de-
fendants. We first show that algorithmic discrimination arises in such settings when the
available algorithmic inputs are systematically different for white and Black defendants
with the same objective misconduct potential. We then show how algorithmic discrim-
ination can be eliminated by measuring and purging these conditional input disparities.
Leveraging the quasi-random assignment of bail judges in New York City, we find that
our new algorithms not only eliminate algorithmic discrimination but also generate more
accurate predictions by correcting for the selective observability of misconduct outcomes.
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1 Introduction

High-stakes predictive algorithms often generate different predictions for protected groups, even when
group identity is omitted from the algorithmic inputs.! There are growing concerns that such predic-
tive disparities reflect algorithmic discrimination, defined broadly as the incorporation and perpetua-
tion of systemic biases through the inputs. However, interpreting predictive disparities as algorithmic
discrimination is challenging as there may be legitimate differences in the outcome of interest across
groups. Such outcomes are also only selectively observed in most high-stakes settings, hampering
efforts to both measure and eliminate algorithmic discrimination.

This paper develops quasi-experimental tools to understand algorithmic discrimination and build
non-discriminatory algorithms when the outcome of interest is only selectively observed. We apply
these tools in the context of pretrial bail decisions, where conventional algorithmic predictions are gen-
erated using only the misconduct outcomes of released defendants and may also rely on biased inputs.
Judges are mandated by law to allow most defendants to be released before trial while minimizing
the risk of pretrial misconduct, and therefore risk violating U.S. anti-discrimination law if they release
white and Black defendants with the same objective misconduct potential at different rates. We thus
define algorithmic discrimination as racial disparities in risk score predictions conditional on miscon-
duct potential. This definition is consistent with the legal objective of bail judges and recent analyses
of discrimination in both computer science (e.g., Zafar et al., 2017; Berk et al., 2021) and economics
(e.g., Arnold, Dobbie and Hull, 2022; Bohren, Hull and Imas, 2023; Baron et al., Forthcoming).

We focus our analysis on linear prediction models, which include the most common algorithms in
the pretrial setting and elsewhere.? Our first contribution is to show how algorithmic discrimination
arises in such models from disparities in the algorithmic inputs among individuals with the same
outcome of interest. For example, consider a scenario where Black defendants have more prior criminal
convictions than white defendants with the same objective misconduct potential due to racial bias
in past policing and prosecutorial decisions. Algorithmic predictions that put positive weight on this
input would then, all else equal, generate systematically higher risk scores for Black defendants than
white defendants with the same misconduct potential. We propose a new graphical tool to assess the
net effect of such conditional disparities on algorithmic discrimination.

This framework yields a conceptually simple way to build non-discriminatory algorithms: use an
initial pre-processing step to purge conditional disparities in the inputs, thereby eliminating algorith-
mic discrimination at its source. We first show how this approach can be easily implemented when
the outcome of interest is fully observable. Consider a scenario where we observe the true pretrial
misconduct potential for all past defendants. We can regress each algorithmic input on race while con-
trolling for pretrial misconduct potential in this sample. By subtracting the race component of these
regressions from each algorithmic input, we create pre-processed inputs that have no conditional input
disparities by construction. We can then use these pre-processed inputs to build a non-discriminatory

algorithm using, for example, a linear regression of true misconduct potential on the pre-processed

lFor example, there are large protected-group disparities in the predictions generated by algorithms used to make
hiring decisions (Li, Raymond and Bergman, 2020), educational tracking decisions (Bergman, Kopko and Rodriguez,
2023), child protective services decisions (Chouldechova et al., 2018; Cheng et al., 2022), health care decisions (Obermeyer
et al., 2019; Nguyen et al., 2021; Gillette et al., 2022), pretrial release decisions (Skeem and Lowenkamp, 2016; Arnold,
Dobbie and Hull, 2021), lending decisions (Fuster et al., 2022), and tax auditing decisions (Elzayn et al., 2023).

2In the pretrial setting, both the Arnold Ventures Public Safety Assessment (PSA) tool and the New York City
pretrial system use linear models to generate algorithmic predictions. Many medical risk scores also use linear models,
such as the HEART score for predicting cardiac events and the Apgar score for evaluating newborn health.



inputs.?> We also discuss alternative in-processing and post-processing solutions: in-processing con-
strains the model to balance the conditional input disparities, while post-processing directly removes
algorithmic discrimination from the conventional model predictions.

The key empirical challenge in applying this framework is that the outcome of interest is only
selectively observed in most high-stakes settings. For example, in the pretrial context, misconduct
outcomes are observed only among past defendants who are released before trial and not among defen-
dants who are detained. Our second contribution is to show how this challenge can be overcome with
experimental or quasi-experimental variation. We first show that the challenge reduces to estimating a
small set of moments capturing the mean of the selectively observed outcome and its correlation with
race and the non-race algorithmic inputs. We then show how these key moments can be estimated
by “selection-correcting” the observed misconduct potential mean and correlations using exogenous
shocks to the selection mechanism.

We apply these new tools in the New York City pretrial system, using the quasi-random assignment
of bail judges to address the selective observability of pretrial misconduct outcomes. We consider
algorithmic inputs that are common in a range of pretrial risk assessments, many of which include
information about prior criminal history and characteristics of the current charge. We find that
all of these inputs systematically differ across white and Black defendants with the same objective
misconduct potential, with nearly all of these inputs leading to higher risk scores for Black defendants.
For example, we find Black defendants are significantly more likely to have a prior felony conviction
than white defendants conditional on misconduct potential. Prior felony convictions are also positively
correlated with misconduct potential, so algorithms that put positive weight on this input generate
higher risk scores for Black defendants than white defendants with the same misconduct potential.

Overall, we find that a conventional algorithm generates predicted risk scores that are 2.5 percent-
age points (8%) higher for Black defendants than white defendants conditional on true misconduct
potential. Our non-discriminatory algorithm purges the conditional input disparities, thereby elim-
inating the risk score disparity between white and Black defendants with the same misconduct po-
tential. By correcting for the selective observability of misconduct outcomes, our non-discriminatory
algorithm also generates more accurate risk score predictions—reducing mean squared error by 12.1%
compared to the conventional model. Our pre-processing adjustment thus offers a rare “free lunch”
in this setting, improving both fairness and accuracy compared to conventional models.*

This paper builds on a recent empirical literature studying the performance and implementation of
algorithms in high-stakes settings (e.g., Cowgill, 2018; Bhatt et al., 2024). Most relatedly, Kleinberg
et al. (2018) use quasi-random judge assignment to show that predictive algorithms in the pretrial con-
text can both reduce racial disparities and improve accuracy relative to existing judges. Other recent
work studies the implementation of algorithms alongside human decision-makers in other contexts,
finding mixed impacts on both racial disparities and accuracy (e.g., Stevenson, 2018; Stevenson and
Doleac, Forthcoming; Rittenhouse, Putnam-Hornstein and Vaithianathan, 2023; Grimon and Mills,

2022; Albright, 2024). Our analysis shows how quasi-experimental variation can be used to construct

3Conventional pre-processing adjustments residualize each algorithmic input on race without controlling for true
misconduct potential. These adjustments generally fail to purge conditional input disparities unless race is uncorrelated
with true misconduct potential, which is unlikely in most high-stakes settings (e.g., Arnold, Dobbie and Hull, 2022).

4We consider several extensions, finding similar results when generating binary release recommendations at the judges’
current release rates, considering different misconduct types or extrapolation approaches, or building non-discriminatory
algorithms using only released defendants. For example, we find that the risk score disparity translates into a 5% lower
suggested release rate for Black defendants versus white defendants with the same objective misconduct potential.



non-discriminatory algorithms while accounting for human decisions and other important institutional
contexts that generate selectively observed outcomes.

Our analysis also builds on a large theoretical literature studying sources and definitions of algo-
rithmic discrimination. This literature shows how biased data can lead to different types of algorithmic
disparities (e.g., Kallus and Zhou, 2018; Rambachan and Roth, 2020; Madras et al., 2019), how dif-
ferent notions of discrimination are related (e.g., Chouldechova, 2017; Kleinberg, Mullainathan and
Raghavan, 2017; Liang, Lu and Mu, 2023), and how different types of disparities can be purged using
pre-processing adjustments (e.g., Kamiran and Calders, 2012; Feldman et al., 2015; Calmon et al.,
2017; Pope and Sydnor, 2011), in-processing adjustments (e.g., Zafar et al., 2017; Woodworth et al.,
2017; Mishler and Kennedy, 2022), and post-processing adjustments (e.g., Hardt, Price and Srebro,
2016; Pleiss et al., 2017; Kim, Ghorbani and Zou, 2019; Mishler, Kennedy and Chouldechova, 2021).
We contribute to this literature by developing a tractable regression-based framework to understand
and eliminate algorithmic discrimination. Our framework yields intuitive graphical representations
and simple regression calculations for understanding and eliminating algorithmic discrimination in an
ideal scenario in which the outcome of interest is fully observable.

Finally, this paper adds to a recent literature showing how algorithmic discrimination and accuracy
can be studied in settings when the outcome of interest is only selectively observed—sometimes known
as the “selective labels” problem (Lakkaraju et al., 2017; Kleinberg et al., 2018). Much of this literature
uses selection-on-observables assumptions (e.g., Schulam and Saria, 2017; Coston et al., 2020), with
some work bounding deviations from selection-on-observables via sensitivity models (e.g., Rambachan,
Coston and Kennedy, 2023). We add to this literature by showing how, in our regression-based
framework, the selection challenge reduces to the challenge of estimating a small number of moments
with quasi-experimental variation. Our estimation approach can be seen as a version of “identification
at infinity” in conventional sample selection models (e.g., Chamberlain, 1986; Heckman, 1990), using
indicators for quasi-randomly assigned judges as instrumental variables (IVs). This approach builds on
recent advances in measuring the fairness and accuracy of human decision-makers using quasi-random
examiner assignments (Arnold, Dobbie and Hull, 2021, 2022; Angelova, Dobbie and Yang, 2023; Chan,
Gentzkow and Yu, 2022; Baron et al., Forthcoming).® Such assignment variation is already widely
used, suggesting our new tools may be applied in many other settings like lending decisions, medical

diagnoses, and foster care placement.

2 Framework

We develop a framework to study algorithmic discrimination when the outcome of interest is only
selectively observed, focusing on linear models. We use this framework to show how algorithmic
discrimination arises from disparities in the algorithmic inputs among individuals with the same
outcome of interest. We then show how experimental or quasi-experimental variation can be used to

measure and purge such disparities, letting us build non-discriminatory algorithms in selected data.

5Importantly, this approach does not require a model of decision-making or the usual IV monotonicity assumption,
which may be violated in examiner IV designs (e.g., Frandsen, Lefgren and Leslie, 2023). We only require that the
available quasi-experiment induces enough variation in the selection mechanism to reliably estimate the key moments.



2.1 Setting

Consider a population of individuals indexed by ¢ and distinguished by three variables: G; € {0,1},
X; € RE and Y* € R. Here G; denotes membership in a protected group, X; is a vector of K
observable characteristics, and Y;* is an outcome of interest. X; includes a constant and may or
may not include G;. Both G; and X; are observed by the econometrician, but Y;* is only selectively
observed among some set of individuals indicated by D; = 1.

To make this setting concrete, consider a population of white and Black defendants at a pretrial
hearing, where GG; = 1 indicates that defendant 7 is Black and X; includes additional demographic
information, information from the defendant’s criminal records, and various charge characteristics.
Bail judges are legally mandated to minimize the risk of pretrial misconduct, such as a failure to
appear in court (FTA) or a rearrest for a new crime, while releasing most defendants. A defendant’s
pretrial misconduct potential Y;* is thus the outcome of interest. Bail judges may use the observable
characteristics in X; to determine which defendants to release before trial, as well as private infor-
mation from a short pretrial hearing. If a defendant is released (D; = 1), then pretrial misconduct
potential is realized. Otherwise, a defendant is detained (D; = 0), and Y;* is unobserved.

An algorithm uses the observable characteristics in X; (i.e., the algorithmic inputs) to predict Y;*.
We focus our analysis on linear predictions Y, = X8, where the algorithm is parameterized by a
coefficient vector 5 € RX. The set of linear models includes the most widely-used pretrial risk score
algorithms, as well as algorithms in a variety of other high-stakes settings. Linearity is common in
practice because it makes predictive algorithms easier to implement and interpret.

We measure algorithmic discrimination using protected-group disparities in the algorithmic pre-
dictions Y; among defendants with the same objective misconduct potential ¥;*. This measure follows
recent work in both computer science (e.g., Zafar et al., 2017; Berk et al., 2021) and economics (e.g.,
Arnold, Dobbie and Hull, 2022; Bohren, Hull and Imas, 2023; Baron et al., Forthcoming) and is linked
to the legal theory of disparate impact (Arnold, Dobbie and Hull, 2022). Our measure is also con-
sistent with the judges’ legal objective, as judges risk violating U.S. anti-discrimination law if they
release white and Black defendants with the same objective misconduct potential at different rates.

Formally, we measure algorithmic discrimination by the coefficient A in the linear regression:

A~

Vi = a+ AG + 6V + 21 (1)

Here, A captures disparities in the algorithmic predictions Y; among defendants with the same objec-
tive misconduct potential Y;*. Since higher pretrial risk scores generally lead to harsher treatments,
A > 0 can be interpreted as discrimination against the protected group (e.g., Black defendants) while
A < 0 can be interpreted as discrimination against the non-protected group (e.g., white defendants).

The main identification challenge is that Y,;* is only selectively observed among defendants with
D; =1, so A cannot be directly estimated by running this regression in the full population. Estimating
Equation (1) in the D; = 1 subpopulation is likely to yield a biased estimate of A since D; is likely
correlated with (G;,Y;*). We return to this challenge and our solution in Section 2.4 after considering

how algorithmic discrimination can be understood and eliminated if ¥;* were fully observable.

60ur approach to constructing non-discriminatory algorithms extends to other discrimination measures based on
Y;*. Our in-processing solution discussed below can be applied to any non-discrimination constraint based on moments
of {G, X;,Y;*}, and versions of our quasi-experimental strategy can be used to estimate these moments.



2.2 Understanding Algorithmic Discrimination

Algorithmic discrimination A arises from disparities in the algorithmic inputs among defendants with

the same objective misconduct potential. Formally, by Equation (1) and the linearity of Y; = X!p:

A=Y T, @

where I'y; are coefficients from regressions of the form:
Xik = p + DeGi + Yp Y™ + vig. (3)

As in Equation (1), the T’ coefficients capture disparities in each algorithmic input among defendants
with the same misconduct potential. Equation (2) shows that algorithmic discrimination is a linear
combination of these conditional input disparities, weighted by the algorithm’s coefficients S.

To make Equation (2) concrete, consider an example in which Black defendants have more prior
criminal convictions (X;;) than white defendants with the same objective misconduct potential (Y;*)
due to racial bias in past policing and prosecutorial decisions. Here, I'y, > 0. Equation (2) shows
that algorithmic predictions that put positive weight on the number of prior criminal convictions
(Br > 0) would then, all else equal, generate systematically higher risk scores for Black defendants
than white defendants with the same misconduct potential. That is, I'ySr > 0. Intuitively, if Black
defendants have more prior criminal convictions conditional on latent misconduct potential, then they
must receive higher risk scores conditional on latent misconduct potential. The magnitude of such
algorithmic discrimination depends on both the conditional disparity in the number of prior criminal
convictions (I'y) and the weight associated with that factor in the model (Sy).

Panel A of Figure 1 builds on this example, illustrating a new graphical tool for understanding the
drivers of algorithmic discrimination. Each point in the figure represents a hypothetical algorithmic
input k£ with its coefficient By plotted against its conditional disparity I'y. When 'y, > 0 (first
and third quadrants), input k contributes positively to algorithmic discrimination. When T'yf8; < 0
(second and fourth quadrants), input & contributes negatively to algorithmic discrimination. In both
cases, the magnitude of input k’s contribution to algorithmic discrimination is given by the area
connecting input k’s point to the origin, |T'x8%|. In Panel A of Figure 1, the sum of each input’s
contribution in the first and third quadrants is greater in magnitude than that in the second and
fourth quadrants, resulting in algorithmic discrimination, on net, against the protected group.

In principle, points could lie in different quadrants such that >, I'y 8, = 0 despite I'y, # 0. Panel B
of Figure 1 shows such an example, where the conditional disparities in algorithmic inputs I'y, are small
and uncorrelated with the algorithmic coefficients ;. In this case, the conditional input disparities
Ty cancel out, resulting in no algorithmic discrimination (A = 0). In practice, such balancing-out
is unlikely to arise by chance in conventional algorithmic constructions. However, Panel B of Figure
1 suggests we can eliminate algorithmic discrimination using alternative constructions. If all inputs
were adjusted to have an exactly zero conditional disparity, i.e., 'y = 0, then any linear algorithm

would exhibit zero algorithm discrimination.



2.3 Building a Non-Discriminatory Algorithm

Our non-discriminatory algorithm uses an initial pre-processing adjustment that partially residualizes
each algorithmic input using the race component of Equation (3), such that each input has an exactly

zero conditional disparity. Formally, define:

Xir = X — TG (4)

By construction, the pre-processed X;; exhibit no conditional disparity among individuals with the
same Y;*. That is, the coefficient from regressing each X on Gy, controlling for Y;*, is mechanically
zero. It follows from Equation (2) that any algorithmic prediction that is linear in these X1 exhibits
no algorithmic discrimination. Intuitively, pre-processing eliminates algorithmic discrimination by
removing any variation along the horizontal axis in plots like Panel A of Figure 1.7

We can then build a non-discriminatory algorithm by regressing true misconduct potential on the
pre-processed inputs. Formally, let 3 = E[Xif({]’lE[f(ﬂ/;*] where X; collects the pre-processed Xy,
and let }A’iP re = Xl’ 3 denote the resulting pre-processed algorithmic predictions. Here, 5 minimizes
mean squared error (MSE): § = argmin, E [(Y;* — X/b)?].

Two alternative non-discriminatory algorithm constructions build on other adjustments from the
literature to balance-out algorithmic discrimination such that »°, T'yfr = 0 despite I'y # 0. First
consider an in-processing procedure that directly minimizes the MSE of algorithmic predictions while

constraining A = 0. Formally, let }A/iI " = X[B* denote the in-processed algorithmic predictions where
B* =argmin I (Y — X[b)?] st. I'b=0, (5)

forT'=(Tq,...,I'x)". Equation (5) is a constrained least-squares problem that minimizes the MSE of
linear predictions based on the original X;, subject to the constraint of no algorithmic discrimination.

The solution to this problem is:
g* =Y — B[X; X}]"'T (I"E[X,X/)~'T) " 1787, (6)

where 8Y = E[X; X/] ' E[X;Y;*] is the unconstrained solution to Equation (5). Intuitively, 3* projects
the unconstrained coefficient vector Y onto the vector of conditional input disparities I' (weighting
by E[X;X[]7!) and takes the residuals. By construction, these residuals balance-out algorithmic
discrimination by removing any trend through the origin in plots like Panel A of Figure 1. For
example, A > 0 if the slope of the line of best fit through the origin is positive.

The second alternative construction is a post-processing procedure that subtracts the average
level of algorithmic discrimination from the predictions of the protected group. Formally, consider
viPost = X!V — AUG;, where AU is the level of algorithmic discrimination in the unconstrained
algorithm (i.e., I'8Y). By construction, the coefficient from regressing YiPOSt on G; controlling for Y;*
is zero. Intuitively, this is because post-processing adds to the algorithmic inputs a new component
Xik+1 = G; where 'y = 1 and Bgy1 = —AU. This adds a new point to plots like Panel A of
Figure 1, balancing out discrimination because ZkK;ll IpBr =AY +1-(—-AY) =0.

"By comparison, pre-processing adjustments that do not control for Y;* generally fail to eliminate algorithmic dis-
crimination because of omitted variables bias. Formally, consider an algorithm constructed from X, — ApG; instead
of Xik, where Ay comes from the regression: X, = 7 + AxGi + vi. From Equation (3), we have that Ay =
Ty + 4 (B[Y | Gi =1] — E[Y;* | G = 0]), such that Ty # Ag when ¢, # 0 and E[Y;" | G; = 1] # E[Y;" | G; = 0].



We focus on the pre-processed algorithm as it has at least two practical advantages. First, the
computation of ?;P "¢ is relatively simple and transparent with a two-step procedure that involves only
linear regressions. Second, pre-processing the algorithmic inputs ensures no discrimination in any
linear algorithm based on these inputs. However, there are settings in which in-processed and post-
processed algorithms may be preferred. In-processing yields the most accurate non-discriminatory
predictions based on (X;,G;), while post-processing can eliminate discrimination from non-linear
algorithmic predictions. We apply and compare all three algorithms below.

Each solution is straightforward to implement when Y;* is fully observable. For example, Equations
(2) and (4) show that both the level of discrimination in a given algorithm and the pre-processing step
that eliminates algorithmic discrimination are simple functions of I, where I' is a known function of
the first and second moments of {X;, G;,Y;*}. If we can estimate these moments, we can measure and
eliminate algorithmic discrimination (the same logic holds for the in-processing and post-processing so-
lutions). The main identification challenge is that Y;* is only selectively observed in the subpopulation

of individuals with D; = 1, so the key moments cannot be directly estimated.

2.4 Identification

We next show that the selection challenge can be overcome by estimating a small set of moments that
captures the mean of the selectively observed outcome and its correlation with race and the non-race

algorithmic inputs. To see this, note that each element of I' can be written:

r, = BUGi — k=Y ) Xu] _ B[Gi Xik] — kE[Xir] — yE[Y; Xig]
FTBG =RV R EIG+ R A~ 2 (RBIG + e BV + A BIGY,])
where y = SpRGY = FCREEGID, & = Bl — yB[Y7), and E[G) = E[G since G is

binary. It follows that I" is identified by the (3K + 4) x 1 moment vector:

© = [E[Gi], E[X,]', E[G:X,], B[Y;"], E[Y;?], B|G:Y;'], E[X]Y;]). (7)

Directly estimable Selection-affected

The first 2K + 1 elements of © do not involve the selectively observed Y;* and can thus be directly
estimated. The selection challenge therefore reduces to that of estimating the remaining K + 3
elements of © involving Y;*. When Y;* is binary, the challenge further simplifies to estimating only
K + 2 selection-affected moments since E[Y;*?] = E[Y;*].

We can estimate the selection-affected moments by selection-correcting their observed analogs
using experimental or quasi-experimental variation in the selection mechanism. To build intuition
for this approach, consider an experiment in which a researcher randomly assigns individuals to an
intervention that directly reveals Y;*. Formally, let Z; € {0,1} indicate randomized assignment to
the intervention and let D;(z) € {0,1} indicate the potential observability of Y;* when Z; = z such
that D; = D;(Z;). Suppose D;(1) = 1, such that Y;* is observed for all individuals assigned to the

intervention. Then, any moment of the form E[h(X;, G;,Y;*)], for some h(-), is directly estimable by
the observed analog in the subpopulation of individuals with D; = Z; = 1:

E[h(X;,Gi,Y]") | Di =1,Z; = 1] = E[h(X;, Gy, Y]") | Di(1) = 1] = E[M(X;, Gy, Y;")]. (8)



Here, the first equality follows from the randomization of Z; while the second equality follows from
the fact that D;(1) = 1. Equation (8) thus shows how to estimate the selection-affected moments in
© when such a randomized intervention is possible.

The selection-affected moments in © can also be estimated by extrapolating variation in their
observed analogs across an as-good-as-randomly assigned Z; € Z. Formally, suppose Z; is as-good-
as-randomly assigned and only affects observed outcomes through the selection mechanism. These
assumptions make Z; independent of {X;, G;, D;(+),Y;*}, where we again write D;(z) as the potential
observability of Y;* when Z; = z such that D; = D;(Z;). Define:

m.,=Pr(D;=1|2Z; =z)=Pr(D;i(z) =1) (9)
and
o = Elh(Xe, Go Vi) | Di = 1,2 = 2] = E[h(X:, i, Y7) | Di(z) =1, (10)

where the second equalities in both Equation (9) and Equation (10) follow from the independence
of Z;, as before. Both 7, and p/ are directly estimable. We can obtain estimates of the unselected
E[h(X;,Gs,Y;")] by extrapolating variation in the estimated p” across values of z, in the direction of
values where the estimated 7, is close to one.

Empirically, we estimate the required moments in © by extrapolating the p? estimates across a
set of as-good-as-randomly assigned judges indexed by j. This approach to estimating the required
moments is conceptually similar to how average potential outcomes at a treatment cutoff can be
extrapolated from nearby observations in a regression discontinuity design (particularly in “donut”
designs where the data in some window of the treatment cutoff are excluded). In our setting, the
required moments are extrapolated from as-good-as-randomly assigned judges with release rates m;
close to the “cutoff” of 1. For example, estimates of the required moments may come from the vertical
intercept at release rate of 1 of linear or local linear regressions of the averages of h(X;, G;,Y;")
among released defendants on estimated release rates across judges. This approach to estimating
the algorithmic counterfactual at a given release threshold is closely related to that described in
Hull (2020) and Arnold, Dobbie and Hull (2022), who consider different extrapolations of quasi-

experimental moments in the spirit of “identification at infinity” in sample selection models.®

3 Application

3.1 The NYC Pretrial System

We apply our tools in the NYC pretrial system, which is one of the largest in the country. Bail
judges are legally mandated to release most criminal defendants while minimizing the risk of pretrial
misconduct. Judges are granted considerable discretion in determining which defendants should be
released, but they cannot discriminate against minorities and other protected groups even when group

identity contains information about the risk of criminal misconduct (Yang and Dobbie, 2020).

80ne important advantage of this approach is that it can be justified without a conventional first-stage monotonicity
assumption: our extrapolated parameters are valid as long as the average relationship between conditional misconduct
rates and release rates across judges can be reliably estimated. This is likely to hold given the large number of judges
with high release rates.



To help guide their decisions, many jurisdictions give bail judges an algorithmic risk assessment
that predicts each defendant’s likelihood of misconduct and recommends whether to release or detain
the defendant. The NYC tool generates risk scores using a linear model in which each algorithmic
input is associated with a given point value. The overall risk score is then mapped to a specific release
recommendation, which ranges from recommend for release with no conditions for observably low-risk
defendants to not recommended for release for observably high-risk defendants.

We exploit two features of the pretrial system. First, pretrial misconduct potential is observed
among the selected subset of defendants that judges choose to release before trial. Misconduct poten-
tial is, however, unobserved among defendants detained before trial, so we cannot directly estimate the
required moments to measure and eliminate algorithmic discrimination. Second, the case assignment
procedures used in the NYC pretrial system generate quasi-random variation in bail judge assignment
for defendants arrested at the same time and place. This variation in judge assignment generates
quasi-experimental variation in the probability a defendant is released before trial. Appendix Table
A1 confirms that judge assignment to cases is balanced on all observable defendant and case character-
istics conditional on court-by-time fixed effects, and Appendix Table A2 shows that judge assignment
has a strong first-stage effect on the probability that a defendant is released before trial.”

Appendix B gives additional institutional details—including the specific release conditions, the

information available to NYC judges, and details of bail judge assignment.

3.2 Data and Summary Statistics

We observe the universe of arraignments in NYC between November 1, 2008 and November 1, 2013.
The data contain information on the defendant’s sex, race, date of birth, and county of arrest, as well
as the (anonymized) identity of the assigned bail judge. We categorize defendants as white (including
both non-Hispanic and Hispanic white individuals) or Black (non-Hispanic individuals). The data also
contain information on each defendant’s current offense, whether the defendant was released before
trial, their history of prior criminal convictions, and their history of pretrial misconduct (both FTA
and rearrests).'? Appendix B provides additional details on the sample construction.

Panels A and B of Table 1 summarize the sample. Overall, 72% of defendants are released before
trial (76% of white defendants and 69% of Black defendants), and 30% of released defendants later
engage in pretrial misconduct (27% of white defendants and 34% of Black defendants). A large share
of defendants have been previously convicted of a misdemeanor or felony, charged with a drug offense,
or previously rearrested while on pretrial release—all with higher shares among Black defendants.

Panel C of Table 1 summarizes pretrial risk scores from a conventional model that regresses an
indicator for pretrial misconduct (Y;*) on the 12 non-race characteristics (X;;) in Panel B of Table
1 in the sample of defendants who are released before trial (D; = 1). These X, are common in a
range of pretrial risk assessments, many of which include information about prior criminal history
and characteristics of the current charge. We then predict risk scores (Y;) for all defendants in the
sample. The conventional model predicts that 31% of white defendants and 34% of Black defendants

engage in pretrial misconduct if released, showing that Black defendants are observably riskier than

90ur analysis also relies on an exclusion restriction, namely that judges can only systematically affect pretrial
misconduct outcomes through pretrial release decisions. This assumption is standard in the literature (e.g., Arnold,
Dobbie and Yang, 2018; Dobbie, Goldin and Yang, 2018; Arnold, Dobbie and Hull, 2022; Ouss and Stevenson, 2023),
where it is supported by empirical tests.

10We take either form of pretrial misconduct as the primary outcome but explore robustness to other measures.



white defendants. We also see that the average risk score prediction for white and Black defendants
is higher than the observed pretrial misconduct rate among released white and Black defendants,
respectively. This reflects the fact that detained defendants are observably riskier than released
defendants. We next apply our framework to determine the extent to which this disparity reflects

algorithmic discrimination, while also addressing this selection challenge.

3.3 Results

Understanding Algorithmic Discrimination. Panel C of Figure 1 plots estimates of the con-
ditional disparities I'y and algorithmic coefficients [ for each of the 12 non-race inputs in the con-
ventional model, illustrating our new graphical tool for understanding the drivers of algorithmic
discrimination. We obtain the estimates of 'y in three steps. In the first step, we estimate the key
selection-affected moments in Equation (7)— m; and p;’ for each h(-) and each bail judge j—with

ordinary least square (OLS) regressions of the form:

Di=Y miZij+Ciy+e (11)
J

and

h(Xi, Gy, Y] = Zp?Zij + CIN (12)
J

where the second regression is estimated on the subpopulation of released defendants. Here, D; again
indicates whether individual 7 is released before trial, X; is the vector of non-race characteristics shown
in Panel B of Table 1, G; indicates whether a defendant is Black, and Y;* is an indicator for pretrial
misconduct among released defendants. The Z;; dummies indicate assignment to each judge j, and C;
is a de-meaned vector of controls (court-by-time fixed effects), such that 7; and p;? capture regression-
adjusted release rates and selected moments for each judge j.'' In the second step, we estimate the
unselected moments E[h(X;, G;,Y;*)] by extrapolating the ﬁ? estimates towards judges with high 7;
estimates.'? Finally, we plug our estimates of the unselected moments and sample analogs of the
directly estimable moments in Equation (7) into the formula for T'y.

Panel C of Figure 1 shows that all of our algorithmic inputs systematically differ for white and
Black defendants with the same objective misconduct potential. All estimates of 'y are statistically
distinguishable from zero except for the one corresponding to the constant term, which trivially
has no conditional disparity.'®> The figure also shows that nearly all of these inputs lead to higher
risk score predictions for Black defendants compared to white defendants. Most of the estimated
(T'x, Bx) points are in the first and third quadrants, contributing to algorithmic discrimination against
Black defendants in the conventional model. For example, conditional on misconduct potential, we

find that Black defendants are significantly more likely to have a prior felony conviction than white

HFormally, m; = Pr(D;(j) = 1) and p;.‘ = E[h(X;,G;,Y;) | Di(j) = 1] when judges are quasi-randomly assigned
(such that Z; = Zj m;Z;; is independent of (X3, G, Y;") given C;) and when regression-adjustment for C; is sufficient.
The latter condition holds, for example, when release rates and released misconduct rates are linear in the court-by-time
effects for each judge and defendant race. See Section IV.A of Arnold, Dobbie and Hull (2022) for additional details.

2Following Arnold, Dobbie and Hull (2022), our baseline extrapolation uses a flexible local linear regression regression

that weights inversely by the estimated variance of ﬁ;?. Appendix Figure Al plots example extrapolations for E[Y;*],
E[G;Y], and E[X;,Y;*] where X, indicates any prior felony conviction.

13The p-value for testing I'y, = 0 is less than 0.01 for all inputs except for Any Drug Charge, where p = 0.07.
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defendants (I'y, > 0). Having a prior felony conviction is also positively correlated with misconduct
potential (B > 0). Therefore, this input generates higher risk scores for Black defendants than white
defendants with the same objective misconduct potential since I'y 5 > 0.

The horizontal axis of Figure 2 summarizes the net effect of the conditional input disparities,
finding A = 0.03 (SE<0.01) for the conventional model. To capture the accuracy of the algorithm,
we plot the mean squared error (MSE), derived from estimates of the moments in Equation (7), on
the vertical axis.!* The MSE of the conventional model is 0.24.

Eliminating Algorithmic Discrimination. Before turning to our non-discriminatory algorithms,
we first explore the impact of our selection-correction procedure alone. In Figure 2, we find that the
MSE decreases by about 12.5% in the unselected model relative to the conventional model, implying
significant gains in accuracy. We find minimal change in the level of algorithmic discrimination when
moving from the conventional model to the unselected model.

To eliminate this algorithmic discrimination, we turn to our pre-processed model. The vertical axis
of Panel D of Figure 1 shows the estimated /3 coefficients from regressing true misconduct potential
on the pre-processed inputs in the full sample, using estimates of the moments in Equation (7). The
horizontal axis shows that, by construction, these pre-processed inputs have no conditional input
disparities. Relative to the conventional model in Panel C, the pre-processed model puts more weight
on having a prior misdemeanor conviction and less weight on other algorithmic inputs such as having
a prior FTA and having any DUI charge.

Figure 2 also shows that eliminating algorithmic discrimination comes at little cost of accuracy.
Relative to the unselected model, the pre-processed model has only a slightly higher MSE. Our three
non-discriminatory algorithms also have similar accuracy, with the in-processed and post-processed
models yielding similar MSEs as the pre-processed model. Taken together, these findings show that
our approach offers a rare “free lunch” in this setting. Relative to the conventional model, our non-

discriminatory models increase both fairness and accuracy.

Extensions and Robustness Checks. We find similar results when generating binary release
recommendations at the judges’ current release rates, considering different misconduct types or ex-
trapolation approaches, or building our pre-processed model using only released defendants. For
example, Appendix Figure A2 shows relatively modest levels of algorithmic discrimination at different
binary release recommendations in our pre-processed model. By comparison, the conventional model
recommends around a 5% lower release rate for Black defendants compared to white defendants with
the same objective misconduct potential at the average detention rate in NYC. Appendix Table A3
shows that we also obtain similar results when we train our pre-processed model on alternative out-
comes, including just FTA, just rearrests, or a modified outcome measure that captures the social
cost of different misconduct types. We also obtain similar results when using different extrapolation
methods. Finally, we show algorithmic discrimination in our pre-, in-, and post-processed models
constructed using only the sample of released defendants, ignoring selection.!> We find small and
statistically insignificant levels of algorithmic discrimination, indicating that our procedures may suc-
cessfully de-bias conventional algorithms even in situations in which quasi-experimental variation is

not available. Whether this finding extends to other settings is an interesting question for future work.

148ee Appendix C.1 for details on these calculations.
15See Appendix C.2 for details on these calculations.
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4 Conclusion

Predictive algorithms often generate different predictions for protected groups, but it is unclear
whether these disparities reflect algorithmic discrimination or legitimate differences in the outcome of
interest. This paper develops new quasi-experimental tools to understand algorithmic discrimination
and build non-discriminatory algorithms when the outcome of interest is only selectively observed,
which is common in many high-stakes settings. We apply these tools in the context of pretrial bail de-
cisions, where conventional algorithmic predictions are generated using only the misconduct outcomes
of released defendants. We show that algorithmic discrimination arises when the available inputs are
systematically different for white and Black defendants with the same objective misconduct potential.
We then show how these conditional input disparities can be measured and purged using the quasi-
random assignment of bail judges, thereby eliminating algorithmic discrimination. In NYC, our new
algorithms not only eliminate algorithmic discrimination but also generate more accurate predictions
by correcting for the selective observability of misconduct outcomes.

The methods developed in this paper may prove useful for understanding algorithmic discrimina-
tion and building non-discriminatory algorithms in other high-stakes settings. Our approach is appro-
priate whenever there is selection on the outcome of interest and experimental or quasi-experimental
variation can be used to address such selection. Many settings have these features, including lending

decisions, medical diagnoses, hiring decisions, and foster care decisions.
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Figure 1: Illustrations of Algorithmic Discrimination
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Notes. This figure shows how conditional disparities in algorithmic inputs translate into algorithmic discrimination.
The amount each point contributes to algorithmic discrimination is given by 'y 3k, where the total amount of algo-
rithmic discrimination is E o Lk Br. Panel A illustrates a hypothetical example of algorithmic discrimination against

the protected group. There are more inputs that increase algorithmic discrimination (blue) than there are inputs that
decrease algorithmic discrimination (orange). Panel B illustrates a hypothetical example of no discrimination against
either group. While some inputs moderately increase algorithmic discrimination (blue), others moderately decrease
algorithmic discrimination (orange), leading to zero algorithmic discrimination on average. Panels C and D apply this
framework to the conventional and pre-processed models, plotting model coefficients and conditional disparities for
each of the 12 non-race algorithmic inputs. We estimate model coefficients using an OLS regression of an indicator for
pretrial misconduct on all non-race algorithmic inputs. We measure conditional disparities using the difference in each
algorithmic input between white and Black defendants with the same objective misconduct potential, computed from
the unselected moments as described in the text. All points in Panel D are black as all inputs in the pre-processed
model have zero conditional disparity.
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Figure 2: Algorithmic Discrimination and Accuracy
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Notes. This figure plots the mean squared error (MSE) of each model against algorithmic discrimination.
Algorithmic discrimination captures the difference in average risk scores between white and Black defendants,
conditional on true misconduct potential. Positive values indicate Black defendants on average receive higher
risk scores than white defendants with the same objective misconduct potential. We report bootstrapped
standard errors in parentheses. Dashes represent standard errors that are zero by construction.
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Table 1: Descriptive Statistics

All White Black
Defendants Defendants Defendants
(1) (2 (3)
Panel A: Pretrial Outcomes
Released Before Trial 0.723 0.760 0.689
Pretrial Misconduct, When Released 0.303 0.271 0.336
Panel B: Algorithmic Inputs
Black 0.524 0.000 1.000
Male 0.823 0.842 0.806
Age 22 to 39 0.494 0.523 0.467
Age Above 40 0.257 0.245 0.269
Prior Rearrest 0.230 0.205 0.253
Prior FTA 0.064 0.053 0.074
Any Drug Charge 0.254 0.254 0.253
Any DUI Charge 0.047 0.069 0.027
Any Violent Charge 0.148 0.130 0.165
Any Prior Felony Conviction 0.286 0.235 0.332
Any Prior Violent Conviction 0.120 0.085 0.151
Any Prior Misdemeanor Conviction 0.384 0.335 0.428
Any Property Charge 0.132 0.123 0.139
Panel C: Average Risk Scores
Conventional Model 0.327 0.311 0.341
Total Cases 567,687 270,188 297,499
Cases with Defendant Released 410,479 205,443 205,036

Notes. This table reports descriptive statistics for our analysis sample. The sample consists
of bail hearings that were quasi-randomly assigned to judges between November 1, 2008 and
November 1, 2013, as described in the text. Information on demographics and criminal outcomes
is derived from court records. Pretrial release is defined as meeting the bail conditions set by
the first assigned bail judge. Pretrial misconduct is defined as either failure to appear (FTA)
at a mandated court date or being rearrested for a new offense before case disposition. The
conventional model regresses pretrial misconduct on the algorithmic inputs listed in Panel B,
excluding race.
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Figure Al: Example Extrapolation Plots
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Notes. This figure plots release rates for the 265 judges in our sample against the selected version of certain
moments in Equation (7). Panel A extrapolates pretrial misconduct, our main outcome of interest, to estimate

E[Y;].

Panel B extrapolates the interaction of pretrial misconduct and race to estimate E[G;Y;*]. Panel C

extrapolates the interaction of pretrial misconduct and any prior felony conviction to estimate E[X;,Y;*], where

k in this example refers to any prior felony conviction. All est
described in Equations (11) and (12). The dotted curves plot the
regressions that inverse-weight by the variance of the estimated
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Figure A2: Unconditional Disparities and Algorithmic Discrimination in Detention Rates
A. Conventional Model
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Notes. This figure plots unconditional disparities and algorithmic discrimination in detention rates for vari-
ous thresholds of detention. In Panel A, we first estimate a conventional model and then rank defendants by
predicted risk of misconduct. The unconditional disparity is the difference in detention rates for Black defen-
dants relative to white defendants for a given detention rate in the population. Algorithmic discrimination
is defined as the difference in detention rates for Black defendants relative to white defendants, conditional
on the same objective misconduct potential. Panel B uses the pre-processed model to rank defendants by
predicted risk of misconduct. Dashed lines indicate pointwise 95 percent confidence intervals obtained from
a bootstrapping procedure. A9



Table Al: Tests of Quasi-Random Judge Assignment

All White Black
Defendants Defendants Defendants
(1) ) 3)
Male 0.00008 0.00010 0.00007
(0.00012) (0.00016) (0.00016)
Age 22 to 39 -0.00013 -0.00020 -0.00006
(0.00012) (0.00017) (0.00017)
Age Above 40 -0.00022 -0.00028 -0.00015
(0.00012) (0.00019) (0.00016)
Prior Rearrest -0.00003 0.00015 -0.00018
(0.00009) (0.00015) (0.00012)
Prior FTA -0.00027 -0.00018 -0.00032
(0.00019) (0.00026) (0.00025)
Any Drug Charge -0.00007 -0.00008 -0.00008
(0.00013) (0.00018) (0.00016)
Any DUI Charge 0.00041 0.00046 0.00014
(0.00023) (0.00026) (0.00037)
Any Violent Charge 0.00008 -0.00013 0.00022
(0.00018) (0.00026) (0.00019)
Any Prior Felony Conviction -0.00022 0.00001 -0.00038
(0.00013) (0.00020) (0.00015)
Any Prior Violent Conviction -0.00015 -0.00027 -0.00007
(0.00015) (0.00020) (0.00019)
Any Prior Misdemeanor Conviction 0.00018 0.00013 0.00020
(0.00011) (0.00014) (0.00014)
Any Property Charge -0.00029 -0.00029 -0.00030
(0.00015) (0.00017) (0.00023)
Black -0.00011
(0.00008)
Joint p-value [0.12304] [0.44736] [0.09443]
Court x Time FE Yes Yes Yes
Cases 567,687 270,188 297,499

Notes. This table reports OLS estimates of regressions of judge leniency on various defendant
and case characteristics. The regressions are estimated on the sample described in Table 1.
Judge leniency is estimated using data from other cases assigned to a given bail judge, following
the procedure in Arnold, Dobbie and Hull (2021). All regressions control for court-by-time
fixed effects. The p-values reported at the bottom of each column are from F-tests for joint
significance of the variables listed in the rows. Robust standard errors, two-way clustered at the
individual and the judge level, are reported in parentheses.
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Table A2: First-Stage Effects of Judge Leniency

All ‘White Black
Defendants Defendants Defendants

(1) (2) (3)

Judge Leniency 1.169 0.968 1.340
(0.020) (0.028) (0.033)

Court x Time FE Yes Yes Yes

Mean Release Rate 0.723 0.760 0.689
Cases 567,687 270,188 297,499

Notes. This table reports OLS estimates of regressions of an indicator
for pretrial release on judge leniency. The regressions are estimated on
the sample described in Table 1. Judge leniency is estimated using data
from other cases assigned to a bail judge, following the procedure in
Arnold, Dobbie and Hull (2021). All regressions control for court-by-

time fixed effects. Robust standard errors, two-way clustered at the

individual and the judge level, are reported in parentheses.
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Table A3: Extensions and Robustness Checks

Alternative Outcomes Alternative Extrapolations
Failure to Any Social Released
Baseline Appear Rearrest Cost Linear Quadratic Sample
1 2) 3) (4) (5) (6) )
Conventional 0.025 0.011 0.024 243.145 0.024 0.027 0.025
(0.003) (0.001) (0.002) (20.728) (0.001) (0.003) (0.003)
Unselected 0.027 0.012 0.027 121.354 0.021 0.042 0.025
(0.009) (0.006) (0.007) (145.806) (0.004) (0.013) (0.003)
Pre-Processed 0.000 0.000 0.000 0.000 0.000 0.000 0.002
- - - - - - (0.004)
In-Processed 0.000 0.000 0.000 0.000 0.000 0.000 0.004
- - - - - - (0.002)
Post-Processed 0.000 0.000 0.000 0.000 0.000 0.000 0.003
- - - - - - (0.003)
Cases 567,687 567,687 567,687 567,687 567,687 567,687 567,687

Notes. This table shows the main results from our baseline specification along with various extensions and robustness
checks. Column 1 reports algorithmic discrimination in pretrial misconduct, our main outcome of interest, where algorith-
mic discrimination is the coefficient from regressing predicted pretrial misconduct on a Black indicator, controlling for true
misconduct potential. Columns 2, 3, and 4 report algorithmic discrimination when using alternative outcomes: failure to
appear, any rearrest, and the social cost of misconduct. We construct our social cost measure as described in Angelova,
Dobbie and Yang (2023). Column 5 reports algorithmic discrimination when using a simple linear extrapolation method,
relative to our baseline local linear approach. Column 6 reports algorithmic discrimination when using a quadratic extrap-
olation method. Column 7 reports algorithmic discrimination when selection correction is done using only the sample of
released defendants. We report bootstrapped standard errors in parentheses. Dashes represent standard errors that are
zero by construction. See Table 1 for details on the sample.
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B Data and Setting Appendix

B.1 Judge Assignment and Decisions in NYC

In the main text, we describe judges as making a binary release or detain decision. However, in
practice, judges generally have a few options. They can choose to release-on-recognizance (ROR), in
which case the defendant is released without conditions. The judge can also charge a monetary bail
that a defendant must pay in order to be released. The bail amount is up to the judge’s discretion.
The bail amount will be returned if the defendant appears at all future mandated court dates. A
defendant may also go through a bail bondsman, who will post bail for a fee. If the defendant is
unable or unwilling to pay this fee, then the defendant will remain detained until trial. Finally, a
judge can deny the possibility of bail altogether and remand the defendant into custody. Misconduct
outcomes are unobserved for both defendants that are remanded and defendants that are unable to
pay their monetary bail.

During a case, a judge is presented with a variety of information about the defendant, including
details of the arrest and charge. Since 2003, judges have also been given a risk assessment tool that
predicts whether a defendant would fail to appear in court. This risk assessment was updated in
November 2019 (Luminosity & The University of Chicago’s Crime Lab New York, 2020). While the
two risk assessments vary in terms of the algorithmic inputs and weights associated with them, both
are linear in a small number of characteristics.

Cases are assigned to judges in NYC using a rotation calendar system in each of the five county
courthouses, generating quasi-random variation in bail judge assignment for defendants arrested at the
same time and in the same place. Each county courthouse employs a supervising judge to determine
the schedule that assigns bail judges to the day (9 a.m. to 5 p.m.) and night arraignment shifts (5
p.m. to 1 a.m.) in one or more courtrooms within each courthouse. Individual judges can request to
work certain days or shifts but in practice, there is considerable variation in judge assignments within
a given arraignment shift, day-of-week, month, and year cell. Our assumption is that within these
court-by-time cells (i.e., assigned courtroom, shift, day-of-week, month, and year cells), the judge
assigned to a given defendant is randomly selected.

To test this assumption, Appendix Table Al reports coefficients from an ordinary least squares
(OLS) regression of judge leniency on various defendant and case characteristics, controlling for court-
by-time fixed effects. We measure leniency using the leave-one-out average release rate among all other
defendants assigned to a defendant’s judge.! Most coefficients in this balance table are small and not
statistically significantly different from zero, both overall and by defendant race. A joint F-test fails
to reject the null of quasi-random assignment at conventional levels of statistical significance.

Appendix Table A2 verifies that judge assignment meaningfully affects the probability that a
defendant is released before trial. Each column of this table reports coefficients from an OLS regression
of an indicator for pretrial release on judge leniency and court-by-time fixed effects. A one percentage
point increase in the predicted leniency of a defendant’s judge is associated with a 1.17 percentage point

increase in the probability of release, with a somewhat smaller first-stage effect for white defendants

1Following the standard approach in the literature (e.g., Arnold, Dobbie and Yang, 2018; Dobbie, Goldin and Yang,
2018; Arnold, Dobbie and Hull, 2022), we construct the leave-one-out measure by first regressing pretrial release on court-
by-time fixed effects and then using the residuals from this regression to construct the leave-one-out residualized release
rate. By first residualizing on court-by-time effects, the leave-one-out measure captures the leniency of a particular
judge relative to that of judges assigned to the same court-by-time cells.
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and a somewhat larger effect for Black defendants.

B.2 Sample-Selection Criteria

We make six key restrictions to arrive at our estimation sample, broadly following Arnold, Dobbie and
Hull (2022). First, we drop cases where the defendant is not charged with a felony or misdemeanor
(N=26,057). Second, we drop cases that were disposed at arraignment (N=364,051) or adjourned in
contemplation of dismissal (N=230,517). Third, we drop cases in which the defendant is assigned a
$1 cash bail (N=1,284). Cash bail is assigned if the defendant is already serving time in jail on an
unrelated charge. The $1 cash bail is set so that the defendant receives credit for served time and
does not reflect a new judge decision. Fourth, we drop defendants who are non-white and non-Black
(N=45,529). Fifth, we drop cases for which a defendant received a desk appearance ticket since a desk
appearance ticket does not require an arraignment hearing (N=76,232). Finally, we drop defendants
assigned to judges with fewer than 100 cases (N=3,637) and court-by-time cells with fewer than 100
cases or only one unique judge (N=143,062), where a court-by-time cell is defined by the assigned
courtroom, shift, day-of-week, month and year (e.g., the Wednesday night shift in Courtroom A of
the Kings County courthouse in January 2012). The final sample consists of 567,687 cases, 353,422
defendants, and 265 judges. Relative to the full sample of cases, our estimation sample has a somewhat
lower release rate, although the ratio of release rates by race is similar. Our estimation sample is also
broadly representative in terms of defendant and charge characteristics, with a slightly lower share of
defendants with prior FTAs, a slightly higher share of defendants with prior rearrests, and a lower

share of defendants charged with drug and property crimes.

C Econometric Appendix

C.1 Mean Squared Error Calculation

The mean squared error (MSE) of the predictions of a linear algorithm Y, = X|p is given by:

A

E((Y;} - Y)? = BY;?] - 2B[X]Y;"]8 + B'E[X: X]]5, (C1)

2

where the first and second terms are elements of ©. These are affected by the selective observability
of ¥;* and are estimated as part of our main analysis. The third term is not affected by selective

observability of Y.* and is directly estimable. We use this formula to compute the MSE of the

7

conventional, unselected , and in-processed models.
The MSE of the pre-processed model predictions )A/Z-Pre = X{B, where X; = X, —T'G;, is given by:
E((Y; - Y,77)?) =B[Y;®] - 2E[X[Y;"]3 + §'E[X,X]]8
—B[Y;?] - 2B[X[Y;1 - 2B[G.Y; T (C2)
+ B'E[X; X{)B — BTE[G: X]]5 — B'E[X,Gi]I" B + B'TE[G,]I",

which is again a function of the elements of © (both directly estimable and selection-affected) and
the directly estimable E[X;X/]. Finally, the MSE of the post-processed model predictions }A/Z-P ost —
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X!BY — AVG, is given by:

E[(Y;y = Yo =E[(Y;" - X{Y)%] + 2AB[G, (Y — X{5Y)] + A’E[G]

=E[Y;?] - BIX]Y]|8" + 2A (B[G:Y]'] - E[X[Gi]8") + A*E[G], )

where we use the fact that BV = E[X;X/]"'E[X,Y;*] to simplify in the second line. This is also a

function of the elements of © (both directly estimable and selection-affected).

C.2 Algorithmic Discrimination in Released-Sample Models

Column 7 of Appendix Table A3 shows estimates of algorithmic discrimination for versions of the
pre-processed, in-processed, and post-processed models that use released-sample observations of Y;*
to adjust the conventional model instead of our baseline quasi-experimental selection-correction ap-
proach. We detail these calculations below.

Released-sample pre-processed model predictions are given by )~(iR’ B, where Xi’,z = Xk — FkRGi.
' is the coefficient on G; from running regression (3) in the D; = 1 subpopulation. The 3% coefficient
vector is obtained from regressing Y;* on the set of XZIIE in the D; = 1 subpopulation. The level of
algorithmic discrimination in this model is given by (I' — I'®) 3% where I" collects the coefficients on
G; from the full-population regression (3), estimated using quasi-experimental variation.

Released-sample in-processed model predictions are given by X!3*f where *® is given by a

released-sample version of Equation (6):
BR = g — B[X; X/ 'T® (P7 E[X, X])'TR) "' 173, (C4)

which replaces (8Y,T) with (8,T'F). 3 is the coefficient from regressing Y;* on the set of X;; in the
D; = 1 subpopulation. The level of algorithmic discrimination in this model is IV 3*%.
Released-sample post-processed model predictions are given by X/3—ARG;, where A = Tfgisa
released-sample measure of algorithmic discrimination for the conventional model, i.e., the coefficient
from regressing X/3 on G; controlling for ¥;* in the D; = 1 subpopulation. The level of algorithmic

discrimination in this model is given by I'8 — AE.
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