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Abstract
We develop new quasi-experimental tools to understand algorithmic discrimination and
build non-discriminatory algorithms when the outcome of interest is only selectively ob-
served. We first show that algorithmic discrimination arises when the available algorithmic
inputs are systematically different for individuals with the same objective potential out-
comes. We then show how algorithmic discrimination can be eliminated by measuring and
purging these conditional input disparities. Leveraging the quasi-random assignment of
bail judges in New York City, we find that our new algorithms not only eliminate algo-
rithmic discrimination but also generate more accurate predictions by correcting for the
selective observability of misconduct outcomes.
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1 Introduction

High-stakes predictive algorithms often generate different predictions by race, sex, and other charac-
teristics protected by law, even when these characteristics are omitted from the algorithmic inputs.
There are growing concerns that such predictive disparities reflect algorithmic discrimination, defined
broadly as the incorporation and perpetuation of systemic biases through the inputs. However, inter-
preting predictive disparities as algorithmic discrimination is challenging as there may be legitimate
differences in the outcome of interest across groups. Such outcomes are only selectively observed in
most high-stakes settings, hampering efforts to both measure and eliminate algorithmic discrimination.

This paper develops quasi-experimental tools to understand algorithmic discrimination and build
non-discriminatory algorithms when the outcome of interest is only selectively observed. We apply
these tools in the pretrial bail context, where conventional algorithmic predictions are generated using
only the misconduct outcomes of released defendants and may rely on biased inputs. Judges are
mandated by law to allow most defendants to be released before trial while minimizing the risk of
pretrial misconduct, and therefore risk violating U.S. anti-discrimination law if they release white and
Black defendants with the same objective misconduct potential at different rates. We thus define
algorithmic discrimination as racial disparities in risk score predictions conditional on misconduct
potential. This definition is consistent with recent analyses of discrimination in economics (e.g.,
Arnold, Dobbie and Hull, 2022; Bohren, Hull and Imas, 2023; Baron et al., 2024), and the idea of
both equalized odds and balance for the positive/negative class in computer science (Hardt, Price
and Srebro, 2016; Mitchell et al., 2021). Our quasi-experimental tools can be adapted to study
other forms of algorithmic fairness based on objective potential outcomes, including sufficiency and
calibration within groups (Barocas, Hardt and Narayanan, 2023).

We focus our analysis on linear prediction models, which include the most common algorithms in
the pretrial setting and elsewhere. Our first contribution is to show how algorithmic discrimination
arises in such models from disparities in the algorithmic inputs among individuals with the same
outcome of interest. For example, consider a scenario where Black defendants have more prior criminal
convictions than white defendants with the same misconduct potential due to racial bias in past
policing and prosecutorial decisions. Algorithmic predictions that put positive weight on this input
would then, all else equal, generate systematically higher risk scores for Black defendants than white
defendants with the same misconduct potential. We propose a new graphical tool to assess the net
effect of such conditional disparities on algorithmic discrimination.

This framework yields a conceptually simple way to build non-discriminatory algorithms: use an
initial pre-processing step to purge conditional disparities in the inputs, thereby eliminating algorith-
mic discrimination at its source. We first show how this approach can be easily implemented when
the outcome of interest is fully observable. Consider a scenario where we observe the true pretrial
misconduct potential for all past defendants. We can regress each algorithmic input on race while con-
trolling for pretrial misconduct potential in this sample. By subtracting the race component of these
regressions from each algorithmic input, we create pre-processed inputs that have no conditional input
disparities by construction. We can then use these pre-processed inputs to build a non-discriminatory
algorithm using, for example, a linear regression of true misconduct potential on the pre-processed
inputs.1 We also discuss alternative in-processing and post-processing solutions: in-processing con-

1Conventional pre-processing adjustments residualize algorithmic inputs on race without controlling for misconduct
potential. These adjustments generally fail to purge conditional input disparities unless race is uncorrelated with
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strains the model to balance the conditional input disparities, while post-processing directly removes
algorithmic discrimination from the conventional model predictions.

The key challenge in applying this framework is that the outcome of interest is only selectively
observed in most high-stakes settings. For example, in the pretrial context, misconduct outcomes are
observed only among defendants who are released before trial and not among detained defendants.
Our second contribution is to show how this challenge can be overcome with experimental or quasi-
experimental variation. We first show that the challenge reduces to estimating a small set of moments
capturing the mean of the selectively observed outcome and its correlation with race and the non-race
algorithmic inputs. We then show how these key moments can be estimated by “selection-correcting”
the observed misconduct potential mean and correlations using exogenous shocks to the selection
mechanism, such as from a randomized experiment or the quasi-random assignment of individuals to
decision-makers with varying treatment rates.

We apply these new tools in the New York City pretrial system, using the quasi-random assignment
of bail judges with varying release rates to address the selective observability of pretrial misconduct
outcomes. To build intuition for our approach, consider an idealized experiment with a randomly
assigned bail judge who is supremely lenient in that she releases nearly all defendants assigned to her.
The supremely lenient judge’s release rates among these defendants are close to one, meaning (by
random assignment) that the pretrial misconduct rate among her released defendants is close to the
average misconduct risk in the full sample. In practice, we do not observe such a supremely lenient
judge. Instead, we estimate average misconduct risk and its correlation with race and the non-race
algorithmic inputs by extrapolating observed release misconduct rates across quasi-randomly assigned
judges with high release rates.

We use these new tools to consider algorithmic inputs that are common in a range of pretrial
risk assessments, including information about prior criminal history and characteristics of the current
charge. We find that all of these inputs systematically differ across white and Black defendants
with the same objective misconduct potential, with nearly all leading to higher risk scores for Black
defendants. For example, we find Black defendants are significantly more likely to have a prior felony
conviction than white defendants conditional on misconduct potential. Prior felony convictions are
also positively correlated with misconduct potential, so algorithms that put positive weight on this
input generate higher risk scores for Black defendants conditional on misconduct potential.

We find that a conventional algorithm generates predicted risk scores that are 2.5 percentage
points (8%) higher for Black defendants than white defendants conditional on misconduct potential.
Our non-discriminatory algorithm purges the conditional input disparities, thereby eliminating this
risk score disparity. By correcting for the selective observability of misconduct outcomes, our non-
discriminatory algorithm also generates more accurate predictions, reducing mean squared error by
12.1% compared to the conventional model. Our pre-processing adjustment thus offers a rare “free
lunch” in this setting, improving both fairness and accuracy compared to conventional models.

This paper builds on a recent empirical literature studying the performance and implementation of
algorithms in high-stakes settings (e.g., Cowgill, 2018; Bhatt et al., 2024). Most relatedly, Kleinberg
et al. (2018) use quasi-random judge assignment to show that predictive algorithms in the pretrial con-
text can both reduce racial disparities and improve accuracy relative to existing judges. Other recent
work studies the implementation of algorithms alongside human decision-makers in other contexts,

misconduct potential.
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finding mixed impacts on both racial disparities and accuracy (e.g., Stevenson, 2018; Albright, 2024;
Stevenson and Doleac, Forthcoming; Rittenhouse, Putnam-Hornstein and Vaithianathan, 2023; Gri-
mon and Mills, 2022). Our analysis shows how quasi-experimental variation can be used to construct
non-discriminatory algorithms while accounting for human decisions and other important institutional
features generating selectively observed outcomes.

Our analysis also builds on a large theoretical literature studying sources and measures of algorith-
mic discrimination. This literature shows how biased data can lead to different types of algorithmic
disparities (e.g., Kallus and Zhou, 2018; Madras et al., 2019; Rambachan and Roth, 2020), how dif-
ferent notions of discrimination are related (e.g., Chouldechova, 2017; Kleinberg, Mullainathan and
Raghavan, 2017; Liang, Lu and Mu, 2023), and how different types of disparities can be purged using
pre-processing adjustments (e.g., Pope and Sydnor, 2011; Kamiran and Calders, 2012; Feldman et al.,
2015; Calmon et al., 2017), in-processing adjustments (e.g., Woodworth et al., 2017; Zafar et al., 2017;
Mishler and Kennedy, 2022), and post-processing adjustments (e.g., Hardt, Price and Srebro, 2016;
Pleiss et al., 2017; Kim, Ghorbani and Zou, 2019; Mishler, Kennedy and Chouldechova, 2021). We
contribute to this literature by developing a tractable regression-based framework to understand and
eliminate algorithmic discrimination.

Finally, this paper adds to a recent literature showing how algorithmic discrimination and accuracy
can be studied in settings when the outcome of interest is only selectively observed—sometimes known
as the “selective labels” problem (Lakkaraju et al., 2017; Kleinberg et al., 2018). Much of this literature
uses selection-on-observables assumptions (e.g., Schulam and Saria, 2017; Coston et al., 2020), with
some work bounding deviations from selection-on-observables via sensitivity models (e.g., Rambachan,
Coston and Kennedy, 2023). We add to this literature by showing how, in our regression-based
framework, the selection challenge reduces to that of estimating a small number of moments with
quasi-experimental variation. Our estimation approach can be seen as a version of “identification at
infinity” in conventional sample selection models (e.g., Chamberlain, 1986; Heckman, 1990), using
indicators for quasi-randomly assigned judges as instrumental variables (IVs). This approach builds
on recent advances in measuring the fairness and accuracy of human decision-makers using quasi-
random examiner assignments (Arnold, Dobbie and Hull, 2021, 2022; Chan, Gentzkow and Yu, 2022;
Angelova, Dobbie and Yang, 2023; Baron et al., 2024).2 Such assignment variation is already widely
used, suggesting our new tools may be applied in many other settings like lending decisions, medical
diagnoses, and foster care placement.

2 Framework

2.1 Setting

Consider a population of individuals indexed by i and distinguished by three variables: Gi ∈ {0, 1},
Xi ∈ RK , and Y ∗

i ∈ R. Here Gi denotes membership in a particular group, Xi is a vector of K
observable characteristics, and Y ∗

i is an outcome of interest. Xi includes a constant and may or
may not include Gi. Both Gi and Xi are observed by the econometrician, but Y ∗

i is only selectively
observed among some set of individuals indicated by Di = 1.

2Importantly, this approach does not require a model of decision-making or the usual IV monotonicity assumption,
which may be violated in examiner IV designs (e.g., Frandsen, Lefgren and Leslie, 2023). We only require that the
available quasi-experiment induces enough variation in the selection mechanism to reliably estimate the key moments.
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To make this setting concrete, consider a population of white and Black defendants at a pretrial
hearing with Gi = 1 indicating that defendant i is Black and Xi including additional demographic
information, information from the defendant’s criminal records, and various charge characteristics.
Bail judges are legally mandated to minimize the risk of pretrial misconduct, such as a failure to appear
in court (FTA) or a rearrest for a new crime, while releasing most defendants. A defendant’s pretrial
misconduct potential Y ∗

i is thus the outcome of interest. Bail judges may use the characteristics
in Xi to determine which defendants to release before trial, as well as private information from a
short pretrial hearings. If a defendant is released (Di = 1), pretrial misconduct potential is realized.
Otherwise, a defendant is detained (Di = 0) and Y ∗

i is unobserved.
An algorithm uses the observable characteristics in Xi (i.e., the algorithmic inputs) to predict Y ∗

i .
We focus our analysis on linear predictions Ŷi = X ′

iβ, where the algorithm is parameterized by a
coefficient vector β ∈ RK . The set of linear models includes the most widely-used pretrial risk score
algorithms, as well as algorithms in a variety of other high-stakes settings. Linearity is common in
practice because it makes predictive algorithms easier to implement and interpret.3

We measure algorithmic discrimination using across-group disparities in the algorithmic predictions
among defendants with the same objective misconduct potential. This measure follows recent work in
both computer science (e.g., Hardt, Price and Srebro, 2016; Mitchell et al., 2021) and economics (e.g.,
Arnold, Dobbie and Hull, 2022; Bohren, Hull and Imas, 2023; Baron et al., 2024) and is linked to the
legal theory of disparate impact (Arnold, Dobbie and Hull, 2022).4 Our measure is also consistent
with the judges’ legal objective, as judges risk violating U.S. anti-discrimination law if they release
white and Black defendants with the same misconduct potential at different rates.5

Formally, we measure algorithmic discrimination by the coefficient ∆ in the linear regression:

Ŷi = α+ ∆Gi + ϕY ∗
i + εi. (1)

Here, ∆ captures disparities in the algorithmic predictions Ŷi among defendants with the same objec-
tive misconduct potential Y ∗

i . Since higher pretrial risk scores generally lead to harsher treatments,
∆ > 0 can be interpreted as discrimination against the indicated group (e.g., Black defendants) while
∆ < 0 can be interpreted as discrimination against the non-indicated group (e.g., white defendants).

The main identification challenge is that Y ∗
i is only selectively observed among defendants with

Di = 1, so ∆ cannot be directly estimated by running this regression in the full population. Estimating
3While we take the algorithmic inputs as given, one could imagine an initial model selection step that selects these

inputs. In principle our tools could be used to improve this initial step by correcting measures of model fit (e.g.,
mean-squared error, considered below) for the selective observability of outcomes. We leave the development of this
extension, which would likely necessitate sample splitting and other complications, for future research.

4For example, in the binary Y ∗
i case, our measure captures deviations from balance for the positive/negative class (see,

e.g., Mitchell et al., 2021). If Ŷi were an algorithmic classification instead of a prediction, our measure would capture
deviations from equalized odds (see, e.g., Hardt, Price and Srebro, 2016). There are many competing definitions of
algorithmic unfairness and it is generally not possible to eliminate all forms of discrimination simultaneously (Kleinberg
et al., 2018). Correspondingly, any non-discriminatory algorithm will generally remain biased according to at least
one definition of algorithmic unfairness. We focus on measuring and reducing algorithmic discrimination based on a
selectively-observed Y ∗

i , in light of these competing definitions.
5The legal standing of the non-discriminatory algorithms developed in this paper is unclear, reflecting a fundamental

tension in current case law (Yang and Dobbie, 2020). Conventional algorithms may be subject to disparate impact
liability if they assign different risk scores, on average, to individuals with the same misconduct potential. The non-
discriminatory algorithms developed in this paper mitigate this liability by assigning the same average risk scores to
white and Black individuals with the same underlying misconduct potential, but different algorithmic inputs. As a result,
these non-discriminatory algorithms may be subject to disparate treatment liability because of the explicit use of race.
We focus on understanding and building non-discriminatory algorithms in light of such tension, so that policymakers
can develop more informed and equitable guidelines in the future.
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Equation (1) in the Di = 1 subpopulation is likely to yield a biased estimate of ∆ since Di is likely
correlated with (Gi, Y

∗
i ). We return to this challenge and our solution in Section 2.4 after considering

how algorithmic discrimination can be understood and eliminated if Y ∗
i were fully observable.

2.2 Understanding Algorithmic Discrimination

Algorithmic discrimination ∆ arises from disparities in the algorithmic inputs among defendants with
the same objective misconduct potential. Formally, by Equation (1) and the linearity of Ŷi = X ′

iβ:

∆ =
∑

k
Γkβk, (2)

where Γk are coefficients from regressions of the form:

Xik = µk + ΓkGi + ψkY
∗

i + νik. (3)

As in Equation (1), the Γk coefficients capture disparities in each algorithmic input among defendants
with the same misconduct potential. Equation (2) shows that algorithmic discrimination is a linear
combination of these conditional input disparities, weighted by the algorithm’s coefficients βk.

To make Equation (2) concrete, consider an example in which Black defendants have more prior
criminal convictions (Xik) than white defendants with the same objective misconduct potential (Y ∗

i )
due to racial bias in past policing and prosecutorial decisions. Here, Γk > 0. Equation (2) shows that
algorithmic predictions that put positive weight on the number of prior criminal convictions (βk > 0)
would then, all else equal, generate systematically higher risk scores for Black defendants than white
defendants with the same misconduct potential: Γkβk > 0. Intuitively, if Black defendants have more
prior criminal convictions conditional on misconduct potential, then they must receive higher risk
scores conditional on misconduct potential. The magnitude of discrimination depends on both the
conditional disparity in the number of prior criminal convictions (Γk) and the weight associated with
that factor in the model (βk).

Panel A of Figure 1 builds on this example, illustrating a new graphical tool for understanding the
drivers of algorithmic discrimination. Each point in the figure represents a hypothetical algorithmic
input k with its coefficient βk plotted against its conditional disparity Γk. When Γkβk > 0 (first
and third quadrants), input k contributes positively to algorithmic discrimination. When Γkβk < 0
(second and fourth quadrants), input k contributes negatively to algorithmic discrimination. In both
cases, the magnitude of input k’s contribution to algorithmic discrimination is given by the area
connecting input k’s point to the origin, |Γkβk|. In Panel A of Figure 1, the sum of each input’s
contribution in the first and third quadrants is greater in magnitude than that in the second and
fourth quadrants, resulting in algorithmic discrimination, on net, against the indicated group.

In principle, points could lie in different quadrants such that
∑

k Γkβk ≈ 0 despite Γk ̸= 0. Panel B
of Figure 1 shows such an example, where the conditional disparities in algorithmic inputs Γk are small
and uncorrelated with the algorithmic coefficients βk. In this case, the conditional input disparities
Γk cancel out, resulting in no algorithmic discrimination (∆ = 0). In practice, such balancing-out
is unlikely to arise by chance in conventional algorithmic constructions. However, Panel B of Figure
1 suggests we can eliminate algorithmic discrimination using alternative constructions. If all inputs
were adjusted to have an exactly zero conditional disparity, Γk = 0, then any linear algorithm would
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exhibit zero algorithm discrimination.

2.3 Building Non-Discriminatory Algorithms

Our non-discriminatory algorithm uses an initial pre-processing adjustment that partially residualizes
each algorithmic input using the race component of Equation (3), eliminating the conditional disparity
in each input. Formally, define:

X̃ik = Xik − ΓkGi. (4)

By construction, the pre-processed X̃ik exhibit no conditional disparity among individuals with the
same Y ∗

i : the coefficient from regressing each X̃ik on Gi, controlling for Y ∗
i , is mechanically zero.

It follows from Equation (2) that any algorithmic prediction that is linear in these X̃ik exhibits no
algorithmic discrimination.

We can then build a non-discriminatory algorithm by regressing true misconduct potential on the
pre-processed inputs. Formally, let β̃ = E[X̃iX̃

′
i]−1E[X̃iY

∗
i ] where X̃i collects the pre-processed X̃ik,

and let Ŷ P re
i = X̃ ′

iβ̃ denote the resulting pre-processed algorithmic predictions. This β̃ minimizes
mean squared error (MSE): β̃ = arg minb E

[
(Y ∗

i − X̃ ′
ib)2]

.
Two alternative non-discriminatory algorithm constructions build on other adjustments from the

literature to balance-out algorithmic discrimination such that
∑

k Γkβk = 0 despite Γk ̸= 0. First
consider an in-processing procedure that directly minimizes the MSE of algorithmic predictions while
constraining ∆ = 0. Formally, let Ŷ In

i = X ′
iβ

∗ denote the in-processed algorithmic predictions where

β∗ = arg min
b
E

[
(Y ∗

i −X ′
ib)2]

s.t. Γ′b = 0, (5)

for Γ = (Γ1, . . . ,ΓK)′. The solution to this problem is:

β∗ = βU − E[XiX
′
i]−1Γ

(
Γ′E[XiX

′
i]−1Γ

)−1 Γ′βU , (6)

where βU = E[XiX
′
i]−1E[XiY

∗
i ] is the unconstrained solution to Equation (5). Intuitively, β∗ projects

the unconstrained coefficient vector βU onto the vector of conditional input disparities Γ (weighting
by E[XiX

′
i]−1) and takes the residuals. By construction, these residuals balance-out algorithmic

discrimination by removing any trend through the origin in plots like Panel A of Figure 1. For
example, ∆ > 0 if the slope of the line of best fit through the origin is positive.

The second alternative construction is a post-processing procedure that subtracts the average
level of algorithmic discrimination from the predictions of the indicated group. Formally, consider
Ŷ P ost

i = X ′
iβ

U − ∆UGi, where ∆U is the level of algorithmic discrimination in the unconstrained
algorithm (i.e., Γ′βU ). By construction, the coefficient from regressing Ŷ P ost

i on Gi controlling for Y ∗
i

is zero. Intuitively, this is because post-processing adds to the algorithmic inputs a new component
Xi,K+1 = Gi where ΓK+1 = 1 and βK+1 = −∆U . This adds a new point to plots like Panel A of
Figure 1, balancing out discrimination because

∑K+1
k=1 Γkβk = ∆U + 1 · (−∆U ) = 0.

We focus on the pre-processed algorithm as it has at least two practical advantages. First, the
computation of Ŷ P re

i is relatively simple and transparent with a two-step procedure that involves only
linear regressions. Second, pre-processing the algorithmic inputs ensures no discrimination in any
linear algorithm based on these inputs. However, there are settings in which in-processed and post-
processed algorithms may be preferred. In-processing yields the most accurate non-discriminatory
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predictions based on (Xi, Gi), while post-processing can eliminate discrimination from non-linear
algorithmic predictions. We apply and compare all three algorithms below.

Each solution is straightforward to implement when Y ∗
i is fully observable. For example, Equations

(2) and (4) show that both the level of discrimination in a given algorithm and the pre-processing step
that eliminates algorithmic discrimination are simple functions of Γ, where Γ is a known function of
the first and second moments of {Xi, Gi, Y

∗
i }. If we can estimate these moments, we can measure and

eliminate algorithmic discrimination (the same logic holds for the in-processing and post-processing so-
lutions). The main identification challenge is that Y ∗

i is only selectively observed in the subpopulation
of individuals with Di = 1, so the key moments cannot be directly estimated.

2.4 Identification

The selection challenge can be overcome by estimating a small set of moments that captures the mean
of the selectively observed outcome and its correlation with race and the non-race algorithmic inputs.
To see this, note that Γ is a vector of regression coefficients; it can thus be expressed in terms of first
and second moments of the regressors (Gi, Y

∗
i ) and regressands Xik.6 These moments are:

Θ = [E[Gi], E[Xi]′, E[GiXi]′︸ ︷︷ ︸
Directly estimable

, E[Y ∗
i ], E[Y ∗2

i ], E[GiY
∗

i ], E[X ′
iY

∗
i ]︸ ︷︷ ︸

Selection-affected

]′. (7)

The first 2K+1 moments in Θ do not involve the selectively observed Y ∗
i and can therefore be directly

estimated. The challenge is estimating the remaining K + 3 moments involving Y ∗
i .

We can estimate the selection-affected moments by selection-correcting their observed analogs using
experimental or quasi-experimental variation in the selection mechanism. To build intuition, consider
an idealized experiment in which a researcher randomly assigns some individuals to an intervention
that directly reveals Y ∗

i . In this case we could directly estimate all of the selection-affected moments in
Θ by simply computing these moments among the individuals randomly assigned to the intervention.

Formally, let Zi ∈ {0, 1} indicate randomized assignment to the intervention and let Di(z) ∈ {0, 1}
indicate the potential observability of Y ∗

i when Zi = z. Suppose Di(1) = 1, such that Y ∗
i is observed

for all individuals assigned to the intervention. Then, any moment of the form E[h(Xi, Gi, Y
∗

i )],
for some h(·), is directly estimable by the observed analog in the subpopulation of individuals with
Di = Zi = 1:

E[h(Xi, Gi, Y
∗

i ) | Di = 1, Zi = 1] = E[h(Xi, Gi, Y
∗

i ) | Di(1) = 1] = E[h(Xi, Gi, Y
∗

i )]. (8)

Here, the first equality follows from the randomization of Zi while the second equality follows from
the fact that Di(1) = 1. Equation (8) thus shows how to estimate the selection-affected moments in
Θ when such an idealized experiment is feasible.

Absent this idealized experiment, the selection-affected moments in Θ can be estimated by extrap-
olating variation in their observed analogs across a quasi-experimental Zi ∈ Z. Formally, suppose Zi

is as-good-as-randomly assigned and only affects observed outcomes through the selection mechanism.
These assumptions make Zi independent of {Xi, Gi, Di(·), Y ∗

i }, where we again write Di(z) as the

6Specifically, Γk = E[(Gi−κ−γY ∗
i )Xik]

E[(Gi−κ−γY ∗
i

)2] = E[GiXik]−κE[Xik]−γE[Y ∗
i Xik]

E[G2
i

]+κ2+γ2E[Y ∗2
i

]−2(κE[Gi]+κγE[Y ∗
i

]+γE[GiY ∗
i

]) for each k, where we

define γ = Cov(Y ∗
i ,Gi)

V ar(Y ∗
i

) = E[GiY ∗
i ]−E[Gi]E[Y ∗

i ]
E[Y ∗2

i
]−E[Y ∗

i
]2 and κ = E[Gi]−γE[Y ∗

i ] and note that E[G2
i ] = E[Gi] since Gi is binary.
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potential observability of Y ∗
i when Zi = z. Define:

πz = Pr(Di = 1 | Zi = z) = Pr(Di(z) = 1) (9)

and

ρh
z = E[h(Xi, Gi, Y

∗
i ) | Di = 1, Zi = z] = E[h(Xi, Gi, Y

∗
i ) | Di(z) = 1], (10)

where the second equalities in Equations (9) and (10) again follow from the independence of Zi. Both
πz and ρh

z are directly estimable, but they do not point-identify the unselected E[h(Xi, Gi, Y
∗

i )] unless
πz = 1 for some z. Instead, we can estimate the unselected moments by extrapolating the estimated
ρh

z across values of z towards those where the estimated πz is closer to one.
Empirically, we estimate the required moments in Θ by extrapolating the ρh

j estimates across a
set of as-good-as-randomly assigned judges indexed by j. In our setting, estimates of the required
moments may come from the vertical intercept at release rate of 1 of linear or local linear regressions
of the averages of h(Xi, Gi, Y

∗
i ) among released defendants on estimated release rates across judges.

This approach to estimating the algorithmic counterfactual at a given release threshold is closely
related to that described in Hull (2020) and Arnold, Dobbie and Hull (2022), who consider different
extrapolations of quasi-experimental moments in the spirit of “identification at infinity” in sample
selection models. Here, absent any maximally lenient judges, identification is achieved when the
chosen functional form for the average estimated ρh

j , given the estimated πj , is locally accurate.

3 Application

3.1 The NYC Pretrial System

We apply our tools in the NYC pretrial system, where judges are legally mandated to release most
criminal defendants while minimizing the risk of pretrial misconduct. Judges are granted consider-
able discretion in determining which defendants should be released, but they cannot discriminate on
the basis of race, sex, or other characteristics protected by law—even when group identity contains
information about the risk of criminal misconduct (Yang and Dobbie, 2020). To help guide their deci-
sions, many jurisdictions give bail judges an algorithmic risk assessment that predicts each defendant’s
likelihood of misconduct.

We exploit two features of the pretrial system. First, pretrial misconduct potential is observed
among the selected subset of defendants that judges choose to release before trial. Misconduct poten-
tial is, however, unobserved among defendants detained before trial, so we cannot directly estimate the
required moments to measure and eliminate algorithmic discrimination. Second, the case assignment
procedures used in the NYC pretrial system generate quasi-random variation in bail judge assignment
for defendants arrested at the same time and place. Figure 2 shows the resulting quasi-experimental
variation in the probability a defendant is released before trial (i.e., the estimated πj). While no judge
releases all defendants, our identification strategy is helped by the fact that many judges release a
high share of defendants—with some releasing 85% or more on average.7

7Appendix Table A1 confirms that judge assignment to cases is balanced on all observable defendant and case
characteristics conditional on court-by-time fixed effects. Our analysis also relies on an exclusion restriction, namely that
judges can only systematically affect pretrial misconduct outcomes through pretrial release decisions. This assumption
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Appendix B gives additional institutional details—including the specific release conditions, the
information available to NYC judges, and details of bail judge assignment.

3.2 Data and Summary Statistics

We observe the universe of arraignments in NYC between November 1, 2008 and November 1, 2013.
The data contain information on the defendant’s sex, race, date of birth, and county of arrest, as well
as the (anonymized) identity of the assigned bail judge. We categorize defendants as white (including
both non-Hispanic and Hispanic white individuals) or Black (non-Hispanic individuals). The data also
contain information on each defendant’s current offense, whether the defendant was released before
trial, their history of prior criminal convictions, and their history of pretrial misconduct (both FTA
and rearrests).8 Appendix B provides additional details on the sample construction.

Panels A and B of Table 1 summarize the sample. Overall, 72% of defendants are released before
trial (76% of white defendants and 69% of Black defendants), and 30% of released defendants later
engage in pretrial misconduct (27% of white defendants and 34% of Black defendants). A large share
of defendants have been previously convicted of a misdemeanor or felony, charged with a drug offense,
or previously rearrested while on pretrial release—all with higher shares among Black defendants.

Panel C of Table 1 summarizes pretrial risk scores from a conventional model that regresses an
indicator for pretrial misconduct (Y ∗

i ) on the 12 non-race characteristics (Xik) in Panel B of Table
1 in the sample of defendants who are released before trial (Di = 1). These Xik are common in a
range of pretrial risk assessments, many of which include information about prior criminal history
and characteristics of the current charge. We then predict risk scores (Ŷi) for all defendants in the
sample. The conventional model predicts that 31% of white defendants and 34% of Black defendants
engage in pretrial misconduct if released, showing that Black defendants are observably riskier than
white defendants. We also see that average risk score predictions are higher than the observed pretrial
misconduct rate among released defendants, reflecting the fact that detained defendants are observably
riskier.

3.3 Results

Understanding Algorithmic Discrimination. Panel C of Figure 1 plots estimates of the condi-
tional disparities Γk and algorithmic coefficients βk for each of the non-race inputs in the conventional
model. We obtain the estimates of Γk in three steps. In the first step, we estimate the key selection-
affected moments in Equation (7)— πj and ρh

j for each h(·) and each bail judge j—with ordinary least
square (OLS) regressions of the form:

Di =
∑

j

πjZij + C ′
iγ + εi (11)

and

h(Xi, Gi, Y
∗

i ) =
∑

j

ρh
jZij + C ′

iλ
h + νh

i , (12)

is standard and empirically supported in the literature (e.g., Arnold, Dobbie and Yang, 2018; Dobbie, Goldin and Yang,
2018; Ouss and Stevenson, 2023).

8We take either form of pretrial misconduct as the primary outcome but explore robustness to other measures.
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where the second regression is estimated on the subpopulation of released defendants. Here, Di again
indicates whether individual i is released before trial, Xi is the vector of non-race characteristics shown
in Panel B of Table 1, Gi indicates whether a defendant is Black, and Y ∗

i is an indicator for pretrial
misconduct among released defendants. The Zij dummies indicate assignment to each judge j, and Ci

is a de-meaned vector of court-by-time fixed effects, such that πj and ρh
j capture regression-adjusted

release rates and selected moments for each judge j.9 In the second step, we estimate the unselected
moments E[h(Xi, Gi, Y

∗
i )] by extrapolating the ρ̂h

j estimates towards judges with high π̂j estimates.10

Finally, we plug our estimates of the unselected moments and sample analogs of the directly estimable
moments in Equation (7) into the formula for Γk.

Panel C of Figure 1 shows that all of our algorithmic inputs systematically differ for white and Black
defendants with the same misconduct potential. All estimates of Γk are statistically distinguishable
from zero except for the one corresponding to the constant term, which trivially has no conditional
disparity.11 The figure also shows that nearly all of these inputs lead to higher risk score predictions
for Black defendants. Most of the estimated (Γk, βk) points are in the first and third quadrants,
contributing to algorithmic discrimination against Black defendants in the conventional model. For
example, conditional on misconduct potential, we find that Black defendants are significantly more
likely to have a prior felony conviction than white defendants (Γk > 0). Having a prior felony
conviction is also positively correlated with misconduct potential (βk > 0). Therefore, this input
generates higher risk scores for Black defendants conditional on misconduct potential since Γkβk > 0.

The horizontal axis of Figure 3 summarizes the net effect of the conditional input disparities,
finding ∆ = 0.03 (SE<0.01) for the conventional model. To capture the accuracy of the algorithm,
we plot the mean squared error (MSE), derived from estimates of the moments in Equation (7), on
the vertical axis.12 The MSE of the conventional model is 0.24.

Eliminating Algorithmic Discrimination. Before turning to our non-discriminatory algorithms,
we first explore the impact of our selection-correction procedure alone. In Figure 3, we find that the
MSE decreases by about 12.5% in the unselected model relative to the conventional model, implying
significant gains in accuracy. This accuracy increase reflects the fact that the unselected model
chooses coefficients to minimize the mean-squared error in the full population, rather than for the
subpopulation of released defendants. However, we find minimal change in the level of algorithmic
discrimination when moving from the conventional model to the unselected model.

To eliminate this algorithmic discrimination, we turn to our pre-processed model. The vertical axis
of Panel D of Figure 1 shows the estimated β̃ coefficients from regressing true misconduct potential
on the pre-processed inputs in the full sample, using estimates of the moments in Equation (7). The
horizontal axis shows that, by construction, these pre-processed inputs have no conditional input
disparities. Relative to the conventional model in Panel C, the pre-processed model puts more weight
on having a prior misdemeanor conviction and less weight on other algorithmic inputs such as having

9Formally, πj = P r(Di(j) = 1) and ρh
j = E[h(Xi, Gi, Y ∗

i ) | Di(j) = 1] when judges are quasi-randomly assigned
(such that Zi =

∑
j

πjZij is independent of (Xi, Gi, Y ∗
i ) given Ci) and when regression-adjustment for Ci is sufficient.

The latter condition holds, for example, when release rates and released misconduct rates are linear in the court-by-time
effects for each judge and defendant race.

10Following Arnold, Dobbie and Hull (2022), our baseline extrapolation uses a flexible local linear regression regression
that weights inversely by the estimated variance of ρ̂h

j . Appendix Figure A1 plots example extrapolations for E[Y ∗
i ],

E[GiY
∗

i ], and E[XikY ∗
i ] where Xik indicates any prior felony conviction.

11The p-value for testing Γk = 0 is less than 0.01 for all inputs except for Any Drug Charge, where p = 0.07.
12See Appendix C.1 for details on these calculations.
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a prior FTA and having any DUI charge.
Figure 3 also shows that eliminating algorithmic discrimination comes at little cost of accuracy.

Relative to the unselected model, the pre-processed model has only a slightly higher MSE. Our three
non-discriminatory algorithms also have similar accuracy, with the in-processed and post-processed
models yielding similar MSEs as the pre-processed model. Taken together, these findings show that
our approach offers a rare “free lunch” in this setting: relative to the conventional model, our non-
discriminatory models increase both fairness and accuracy.

Extensions and Robustness Checks. We find similar results when generating binary release
recommendations from the algorithmic predictions, considering different misconduct types or extrap-
olation approaches, or building our pre-processed model using only released defendants. For example,
Appendix Figure A2 shows relatively low levels of algorithmic discrimination at different release rec-
ommendations in our pre-processed model; in contrast, the conventional model recommends around
a 5% lower release rate for Black defendants compared to white defendants with the same objective
misconduct potential at the average detention rate in NYC. Appendix Table A2 shows that we also
obtain similar results when we train our pre-processed model on alternative outcomes, including just
FTA, just rearrests, or a modified outcome measure that captures the social cost of different miscon-
duct types. We further obtain similar results when using different extrapolation methods, including
when we extrapolate separately by courtroom and when we additionally adjust more flexibly for time
effects.13 Finally, we show algorithmic discrimination in our pre-, in-, and post-processed models
constructed using only the sample of released defendants, ignoring selection.14 We find small and sta-
tistically insignificant levels of algorithmic discrimination, suggesting our procedures can successfully
de-bias conventional algorithms even in settings where quasi-experimental variation is not available.

4 Conclusion

Predictive algorithms often generate different predictions by race, sex, and other characteristics pro-
tected by law, but it is unclear whether these disparities reflect algorithmic discrimination or legitimate
differences in the outcome of interest. This paper develops quasi-experimental tools to understand
algorithmic discrimination and build non-discriminatory algorithms when the outcome of interest is
only selectively observed, which is common in many high-stakes settings. We apply these tools in
the context of pretrial bail decisions, where conventional algorithmic predictions are generated using
only the misconduct outcomes of released defendants. We show that algorithmic discrimination arises
when the available inputs are systematically different for white and Black defendants with the same
objective misconduct potential. We then show how these conditional input disparities can be mea-
sured and purged using the quasi-random assignment of bail judges, thereby eliminating algorithmic
discrimination. In NYC, our new algorithms not only eliminate discrimination but also generate more
accurate predictions by correcting for the selective observability of misconduct outcomes.

The methods developed in this paper may prove useful for understanding algorithmic discrimina-
13These robustness checks follow Arnold, Dobbie and Hull (2022). In column 7, we fully relax the linearity of courtroom

effects by estimating versions of Equations (11) and (12) separately by courtroom while still adjusting linearly for time
effects. We use these estimated court-specific versions of πj and ρh

j to separately estimate and average together court-
specific versions of the unselected moments E[h(Xi, Gi, Y ∗

i )]. We repeat this exercise in column 8, while further relaxing
linearity of time effects by adding judge-specific time trends to the initial court-specific regressions.

14See Appendix C.2 for details on these calculations.
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tion and building non-discriminatory algorithms in other high-stakes settings such as lending decisions,
medical diagnoses, hiring decisions, and foster care decisions. Broadly, our approach is appropriate
whenever there is selection on the outcome of interest and experimental or quasi-experimental varia-
tion that can be used to correct such selection. While we have focused on quasi-experimental variation
arising from the as-good-as-random assignment of human decision-makers, other exogenous shocks—
such as from as-if-random policy or price changes—could also be used. Extending our framework to
leverage other familiar approaches to addressing selection bias, such as differences-in-differences and
regression discontinuity designs, is an important avenue for future work.
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Figure 1: Illustrations of Algorithmic Discrimination
(a) Hypothetical Algorithmic Discrimination
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(b) Hypothetical No Algorithmic Discrimination
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(c) Conventional Model
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(d) Pre-Processed Model
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Notes. This figure shows how conditional disparities in algorithmic inputs translate into algorithmic discrimination.
The amount each point contributes to algorithmic discrimination is given by Γkβk, where the total amount of algo-
rithmic discrimination is

∑
k

Γkβk. Panel A illustrates a hypothetical example of algorithmic discrimination against
the indicated group. There are more inputs that increase algorithmic discrimination (blue) than there are inputs that
decrease algorithmic discrimination (orange). Panel B illustrates a hypothetical example of no discrimination against
either group. While some inputs moderately increase algorithmic discrimination (blue), others moderately decrease
algorithmic discrimination (orange), leading to zero algorithmic discrimination on average. Panels C and D apply this
framework to the conventional and pre-processed models, plotting model coefficients and conditional disparities for
each of the 12 non-race algorithmic inputs. We estimate model coefficients using an OLS regression of an indicator for
pretrial misconduct on all non-race algorithmic inputs. We measure conditional disparities using the difference in each
algorithmic input between white and Black defendants with the same objective misconduct potential, computed from
the unselected moments as described in the text. All points in Panel D are black as all inputs in the pre-processed
model have zero conditional disparity.

16



Figure 2: Estimates of Judge Leniency
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Notes. This figure plots estimates of judge leniency in increasing rank for the 265 judges in our sample.
Gray bars indicate pointwise 95% confidence intervals.
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Figure 3: Algorithmic Discrimination and Accuracy
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Notes. This figure plots the mean squared error (MSE) of each model against algorithmic discrimination.
Algorithmic discrimination captures the difference in average risk scores between white and Black defendants,
conditional on true misconduct potential. Positive values indicate Black defendants on average receive higher
risk scores than white defendants with the same objective misconduct potential. We report bootstrapped
standard errors in parentheses. Dashes represent standard errors that are zero by construction.
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Table 1: Descriptive Statistics

All White Black
Defendants Defendants Defendants

(1) (2) (3)

Panel A: Pretrial Outcomes
Released Before Trial 0.723 0.760 0.689
Pretrial Misconduct, When Released 0.303 0.271 0.336

Panel B: Algorithmic Inputs
Black 0.524 0.000 1.000
Male 0.823 0.842 0.806
Age 22 to 39 0.494 0.523 0.467
Age Above 40 0.257 0.245 0.269
Prior Rearrest 0.230 0.205 0.253
Prior FTA 0.064 0.053 0.074
Any Drug Charge 0.254 0.254 0.253
Any DUI Charge 0.047 0.069 0.027
Any Violent Charge 0.148 0.130 0.165
Any Prior Felony Conviction 0.286 0.235 0.332
Any Prior Violent Conviction 0.120 0.085 0.151
Any Prior Misdemeanor Conviction 0.384 0.335 0.428
Any Property Charge 0.132 0.123 0.139

Panel C: Average Risk Scores
Conventional Model 0.327 0.311 0.341

Total Cases 567,687 270,188 297,499
Cases with Defendant Released 410,479 205,443 205,036

Notes. This table reports descriptive statistics for our analysis sample. The sample consists
of bail hearings that were quasi-randomly assigned to judges between November 1, 2008 and
November 1, 2013, as described in the text. Information on demographics and criminal outcomes
is derived from court records. Pretrial release is defined as meeting the bail conditions set by
the first assigned bail judge. Pretrial misconduct is defined as either failure to appear (FTA)
at a mandated court date or being rearrested for a new offense before case disposition. The
conventional model regresses pretrial misconduct on the algorithmic inputs listed in Panel B,
excluding race.
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A Appendix Figures and Tables

Figure A1: Example Extrapolation Plots
(a) Misconduct
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(b) Misconduct x Black
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(c) Misconduct x Any Prior Felony Conviction
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Notes. This figure plots release rates for the 265 judges in our sample against the selected version of certain
moments in Equation (7). Panel A extrapolates pretrial misconduct, our main outcome of interest, to estimate
E[Y ∗

i ]. Panel B extrapolates the interaction of pretrial misconduct and race to estimate E[GiY
∗

i ]. Panel C
extrapolates the interaction of pretrial misconduct and any prior felony conviction to estimate E[XikY ∗

i ], where
k in this example refers to any prior felony conviction. All estimates adjust for court-by-time fixed effects as
described in Equations (11) and (12). The dotted curves plot the fitted values of local linear, linear, and quadratic
regressions that inverse-weight by the variance of the estimated released second moments.
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Figure A2: Unconditional Disparities and Algorithmic Discrimination in Detention Rates
A. Conventional Model
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B. Pre-Processed Model
Average Detention Rate in NYC
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Notes. This figure plots unconditional disparities and algorithmic discrimination in detention rates for vari-
ous thresholds of detention. In Panel A, we first estimate a conventional model and then rank defendants by
predicted risk of misconduct. The unconditional disparity is the difference in detention rates for Black defen-
dants relative to white defendants for a given detention rate in the population. Algorithmic discrimination
is defined as the difference in detention rates for Black defendants relative to white defendants, conditional
on the same objective misconduct potential. Panel B uses the pre-processed model to rank defendants by
predicted risk of misconduct. Dashed lines indicate pointwise 95 percent confidence intervals obtained from
a bootstrapping procedure. A.2



Table A1: Tests of Quasi-Random Judge Assignment

All White Black
Defendants Defendants Defendants

(1) (2) (3)

Male 0.00008 0.00010 0.00007
(0.00012) (0.00016) (0.00016)

Age 22 to 39 -0.00013 -0.00020 -0.00006
(0.00012) (0.00017) (0.00017)

Age Above 40 -0.00022 -0.00028 -0.00015
(0.00012) (0.00019) (0.00016)

Prior Rearrest -0.00003 0.00015 -0.00018
(0.00009) (0.00015) (0.00012)

Prior FTA -0.00027 -0.00018 -0.00032
(0.00019) (0.00026) (0.00025)

Any Drug Charge -0.00007 -0.00008 -0.00008
(0.00013) (0.00018) (0.00016)

Any DUI Charge 0.00041 0.00046 0.00014
(0.00023) (0.00026) (0.00037)

Any Violent Charge 0.00008 -0.00013 0.00022
(0.00018) (0.00026) (0.00019)

Any Prior Felony Conviction -0.00022 0.00001 -0.00038
(0.00013) (0.00020) (0.00015)

Any Prior Violent Conviction -0.00015 -0.00027 -0.00007
(0.00015) (0.00020) (0.00019)

Any Prior Misdemeanor Conviction 0.00018 0.00013 0.00020
(0.00011) (0.00014) (0.00014)

Any Property Charge -0.00029 -0.00029 -0.00030
(0.00015) (0.00017) (0.00023)

Black -0.00011
(0.00008)

Joint p-value [0.12304] [0.44736] [0.09443]
Court x Time FE Yes Yes Yes
Cases 567,687 270,188 297,499

Notes. This table reports OLS estimates of regressions of judge leniency on various defendant
and case characteristics. The regressions are estimated on the sample described in Table 1.
Judge leniency is estimated using data from other cases assigned to a given bail judge, following
the procedure in Arnold, Dobbie and Hull (2021). All regressions control for court-by-time
fixed effects. The p-values reported at the bottom of each column are from F-tests for joint
significance of the variables listed in the rows. Robust standard errors, two-way clustered at the
individual and the judge level, are reported in parentheses.
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Table A2: Extensions and Robustness Checks
Alternative Outcomes Alternative Extrapolations

Failure to Any Social Linear Quadratic By With Judge Released
Baseline Appear Rearrest Cost Extrapolation Extrapolation Courtroom x Time FE Sample

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Conventional 0.025 0.011 0.024 243.145 0.024 0.027 0.026 0.025 0.025

(0.003) (0.001) (0.002) (20.728) (0.001) (0.003) (0.002) (0.005) (0.003)
Unselected 0.027 0.012 0.027 121.354 0.021 0.042 0.025 0.029 0.025

(0.010) (0.006) (0.007) (145.806) (0.004) (0.013) (0.010) (0.017) (0.003)
Pre-Processed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

– – – – – – – – (0.004)
In-Processed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004

– – – – – – – – (0.002)
Post-Processed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003

– – – – – – – – (0.003)
Cases 567,687 567,687 567,687 567,687 567,687 567,687 567,342 565,534 567,687

Notes. This table shows the main results from our baseline specification along with various extensions and robustness checks. Column 1 reports algorithmic discrimination
in pretrial misconduct, our main outcome of interest, where algorithmic discrimination is the coefficient from regressing predicted pretrial misconduct on a Black
indicator, controlling for true misconduct potential. Pretrial misconduct is predicted for all defendants, not only those that are released. Columns 2, 3, and 4 report
algorithmic discrimination when using alternative outcomes: FTA, any rearrest, and the social cost of misconduct. We construct our social cost measure as described in
Angelova, Dobbie, and Yang (2023). Column 5 reports algorithmic discrimination when using a simple linear extrapolation method, relative to our baseline local linear
approach. Column 6 reports algorithmic discrimination when using a quadratic extrapolation method. Column 7 reports algorithmic discrimination for each borough
and averages the resulting estimates by borough case share. We limit the sample to judges who see at least 25 cases in each borough. Column 8 reports algorithmic
discrimination as in Column 7 and additionally controls for judge x year-month fixed effects. Here, we additionally limit the sample to judges for which time effects
are identified. Column 9 reports algorithmic discrimination when selection correction is done using only the sample of released defendants. We report bootstrapped
standard errors in parentheses. Dashes represent standard errors that are zero by construction. See Table 1 for details on the sample.
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B Data and Setting Appendix

B.1 Judge Assignment and Decisions in NYC

In the main text, we describe judges as making a binary release or detain decision. However, in
practice, judges generally have a few options. They can choose to release-on-recognizance (ROR), in
which case the defendant is released without conditions. The judge can also charge a monetary bail
that a defendant must pay in order to be released. The bail amount is up to the judge’s discretion.
The bail amount will be returned if the defendant appears at all future mandated court dates. A
defendant may also go through a bail bondsman, who will post bail for a fee. If the defendant is
unable or unwilling to pay this fee, then the defendant will remain detained until trial. Finally, a
judge can deny the possibility of bail altogether and remand the defendant into custody. Misconduct
outcomes are unobserved for both defendants that are remanded and defendants that are unable to
pay their monetary bail.

During a case, a judge is presented with a variety of information about the defendant, including
details of the arrest and charge. Since 2003, judges have also been given a risk assessment tool that
predicts whether a defendant would fail to appear in court. This risk assessment was updated in
November 2019 (Luminosity & The University of Chicago’s Crime Lab New York, 2020). While the
two risk assessments vary in terms of the algorithmic inputs and weights associated with them, both
are linear in a small number of characteristics.

Cases are assigned to judges in NYC using a rotation calendar system in each of the five county
courthouses, generating quasi-random variation in bail judge assignment for defendants arrested at the
same time and in the same place. Each county courthouse employs a supervising judge to determine
the schedule that assigns bail judges to the day (9 a.m. to 5 p.m.) and night arraignment shifts (5
p.m. to 1 a.m.) in one or more courtrooms within each courthouse. Individual judges can request to
work certain days or shifts but in practice, there is considerable variation in judge assignments within
a given arraignment shift, day-of-week, month, and year cell. Our assumption is that within these
court-by-time cells (i.e., assigned courtroom, shift, day-of-week, month, and year cells), the judge
assigned to a given defendant is randomly selected.

To test this assumption, Appendix Table A1 reports coefficients from an ordinary least squares
(OLS) regression of judge leniency on various defendant and case characteristics, controlling for court-
by-time fixed effects. We measure leniency using the leave-one-out average release rate among all other
defendants assigned to a defendant’s judge.1 Most coefficients in this balance table are small and not
statistically significantly different from zero, both overall and by defendant race. A joint F -test fails
to reject the null of quasi-random assignment at conventional levels of statistical significance.

Figure 2 verifies that judge assignment meaningfully affects the probability that a defendant is
released before trial, with a strong relationship between the predicted leniency of a defendant’s judge
and the probability of release. First stage regressions show that a one percentage point increase in
the predicted leniency of a defendant’s judge is associated with a 1.17 percentage point increase in
the probability of release, after accounting for court-by-time fixed effects.

1Following the standard approach in the literature (e.g., Arnold, Dobbie and Yang, 2018; Dobbie, Goldin and Yang,
2018; Arnold, Dobbie and Hull, 2022), we construct the leave-one-out measure by first regressing pretrial release on court-
by-time fixed effects and then using the residuals from this regression to construct the leave-one-out residualized release
rate. By first residualizing on court-by-time effects, the leave-one-out measure captures the leniency of a particular
judge relative to that of judges assigned to the same court-by-time cells.
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B.2 Sample-Selection Criteria

We make six key restrictions to arrive at our estimation sample, broadly following Arnold, Dobbie and
Hull (2022). First, we drop cases where the defendant is not charged with a felony or misdemeanor
(N=26,057). Second, we drop cases that were disposed at arraignment (N=364,051) or adjourned in
contemplation of dismissal (N=230,517). Third, we drop cases in which the defendant is assigned a
$1 cash bail (N=1,284). Cash bail is assigned if the defendant is already serving time in jail on an
unrelated charge. The $1 cash bail is set so that the defendant receives credit for served time and
does not reflect a new judge decision. Fourth, we drop defendants who are non-white and non-Black
(N=45,529). Fifth, we drop cases for which a defendant received a desk appearance ticket since a desk
appearance ticket does not require an arraignment hearing (N=76,232). Finally, we drop defendants
assigned to judges with fewer than 100 cases (N=3,637) and court-by-time cells with fewer than 100
cases or only one unique judge (N=143,062), where a court-by-time cell is defined by the assigned
courtroom, shift, day-of-week, month and year (e.g., the Wednesday night shift in Courtroom A of
the Kings County courthouse in January 2012). The final sample consists of 567,687 cases, 353,422
defendants, and 265 judges. Relative to the full sample of cases, our estimation sample has a somewhat
lower release rate, although the ratio of release rates by race is similar. Our estimation sample is also
broadly representative in terms of defendant and charge characteristics, with a slightly lower share of
defendants with prior FTAs, a slightly higher share of defendants with prior rearrests, and a lower
share of defendants charged with drug and property crimes.

C Econometric Appendix

C.1 Mean Squared Error Calculation

The mean squared error (MSE) of the predictions of a linear algorithm Ŷi = X ′
iβ is given by:

E[(Y ∗
i − Ŷi)2] = E[Y ∗2

i ] − 2E[X ′
iY

∗
i ]β + β′E[XiX

′
i]β, (C1)

where the first and second terms are elements of Θ. These are affected by the selective observability
of Y ∗

i and are estimated as part of our main analysis. The third term is not affected by selective
observability of Y ∗

i and is directly estimable. We use this formula to compute the MSE of the
conventional, unselected , and in-processed models.

The MSE of the pre-processed model predictions Ŷ P re
i = X̃ ′

iβ̃, where X̃i = Xi − ΓGi, is given by:

E[(Y ∗
i − Ŷ P re

i )2] =E[Y ∗2
i ] − 2E[X̃ ′

iY
∗

i ]β̃ + β̃′E[X̃iX̃
′
i]β̃

=E[Y ∗2
i ] − 2E[X ′

iY
∗

i ]β̃ − 2E[GiY
∗

i ]Γ′β̃

+ β̃′E[XiX
′
i]β̃ − β̃′ΓE[GiX

′
i]β̃ − β̃′E[XiGi]Γ′β̃ + β̃′ΓE[Gi]Γ′β̃,

(C2)

which is again a function of the elements of Θ (both directly estimable and selection-affected) and
the directly estimable E[XiX

′
i]. Finally, the MSE of the post-processed model predictions Ŷ P ost

i =
X ′

iβ
U − ∆UGi is given by:

E[(Y ∗
i − Ŷ P ost

i )2] =E[(Y ∗
i −X ′

iβ
U )2] + 2∆E[Gi(Y ∗

i −X ′
iβ

U )] + ∆2E[Gi]

=E[Y ∗2
i ] − E[X ′

iY
∗

i ]βU + 2∆
(
E[GiY

∗
i ] − E[X ′

iGi]βU
)

+ ∆2E[Gi],
(C3)
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where we use the fact that βU = E[XiX
′
i]−1E[XiY

∗
i ] to simplify in the second line. This is also a

function of the elements of Θ (both directly estimable and selection-affected).

C.2 Algorithmic Discrimination in Released-Sample Models

Column 9 of Appendix Table A2 shows estimates of algorithmic discrimination for versions of the
pre-processed, in-processed, and post-processed models that use released-sample observations of Y ∗

i

to adjust the conventional model instead of our baseline quasi-experimental selection-correction ap-
proach. We detail these calculations below.

Released-sample pre-processed model predictions are given by X̃R′
i βR, where X̃R

ik = Xik − ΓR
k Gi.

ΓR
k is the coefficient on Gi from running regression (3) in the Di = 1 subpopulation. The βR coefficient

vector is obtained from regressing Y ∗
i on the set of X̃R

ik in the Di = 1 subpopulation. The level of
algorithmic discrimination in this model is given by (Γ − ΓR)′βR, where Γ collects the coefficients on
Gi from the full-population regression (3), estimated using quasi-experimental variation.

Released-sample in-processed model predictions are given by X ′
iβ

∗R, where β∗R is given by a
released-sample version of Equation (6):

β∗R = β − E[XiX
′
i]−1ΓR

(
ΓR′E[XiX

′
i]−1ΓR

)−1 ΓR′β, (C4)

which replaces (βU ,Γ) with (β,ΓR). β is the coefficient from regressing Y ∗
i on the set of Xik in the

Di = 1 subpopulation. The level of algorithmic discrimination in this model is Γ′β∗R.
Released-sample post-processed model predictions are given by X ′

iβ−∆RGi, where ∆R = ΓRβ is a
released-sample measure of algorithmic discrimination for the conventional model, i.e., the coefficient
from regressing X ′

iβ on Gi controlling for Y ∗
i in the Di = 1 subpopulation. The level of algorithmic

discrimination in this model is given by Γ′β − ∆R.
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