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Corrections to Published Paper

This appendix makes precise the formal definition of racial bias in our article “Racial Bias in Bail
Decisions” published in the Quarterly Journal of Economics in November 2018. Our paper defines
a judge as racially biased if her decisions cannot be solely explained by accurate statistical discrim-
ination. Therefore, a judge is racially biased if she perceives a higher threshold of release for black
defendants than white defendants at the margin, or under an alternative model, if she overestimates
the cost of release for black defendants relative to white defendants at the margin. We refer to
this verbal definition repeatedly throughout the paper. However, our formal definition of bias was
insufficiently precise as to our intended definition of bias, which we realized in light of a working
paper by Canay, Mogstad, and Mountjoy (2020).

To make our intended definition of bias clear, we make the following amendments to the published
paper, where page numbers refer to the published version:

(1) On p. 1893, at the end of the paragraph beginning “The perceived benefit of release for defendant
i...” we add the following definitions: “Let the non-race characteristics of the marginal defendant
for judge j and race r be denoted V∗i,r. We correspondingly define tj∗r = tjr(V∗i,r).”

(2) On p. 1893, Definition 1 should be: “DEFINITION 1. Following Becker (1957, 1993), we define
judge j as racially biased against black defendants if tj∗W > tj∗B . Thus, for racially biased judges, there
is a higher perceived benefit of releasing white defendants than black defendants at the margin.”

(3) On p. 1894, at the end of the sentence beginning “Given this decision rule...,” tjr(Vi) should
be tjr(V∗i,r) and at the end of the sentence beginning “We simplify our notation...,” αjr should be
αjr = E[αji |Vi = V∗i,r, ri = r].

(4) On p. 1895, Definition 2 should be: “DEFINITION 2. We define judge j as making racially
biased prediction errors in risk against black defendants if τ jW (Vi = V∗i,W ) > τ jB(Vi = V∗i,B). Thus,
judges making racially biased prediction errors systematically overestimate the true cost of release
for black defendants relative to white defendants at the margin.”

(5) In Equations (4), (5), (6), (8) and any discussion of these equations, tjr should be tj∗r .

(6) On p. 1922, in the sentence beginning with “Bail judges could, for example, harbor...” the
phrase “observably similar” should be struck.

(7) We have made the corresponding notational changes in the online appendix that follows.
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Online Appendix A: Additional Results

Online Appendix Table A1

Racial Bias in the Assignment of Non-Monetary Bail

White Black DIV

Panel A: Pre-Trial Release (1) (2) (3)
Pre-trial Release 0.490∗∗∗ 0.511∗∗∗ −0.021

(0.081) (0.045) (0.092)
[0.711] [0.688] –

Panel B: Pre-Trial Misconduct
Rearrest Prior to Disposition 0.085∗ −0.009 0.094

(0.050) (0.039) (0.065)
[0.172] [0.182] –

Rearrest for Drug Crime 0.060∗∗ −0.026 0.086∗∗

(0.030) (0.026) (0.041)
[0.077] [0.081] –

Rearrest for Property Crime 0.087∗∗ 0.001 0.086∗

(0.037) (0.029) (0.048)
[0.065] [0.068] –

Rearrest for Violent Crime 0.033 0.010 0.022
(0.029) (0.027) (0.040)
[0.047] [0.071] –

Observations 106,846 149,407 –

Notes. This table reports estimates of the impact of assigning non-monetary bail (defined as both ROR and
non-monetary conditions) versus monetary bail on pre-trial release (Panel A) and pre-trial misconduct (Panel B).
Columns (1)–(2) report two-stage least squares results of the impact of pre-trial release on the probability of pre-
trial misconduct separately by race, while column (3) reports the difference between the white and black two-stage
least squares coefficients, or DIV as described in the text. All specifications use IV weights for each specification
and report robust standard errors two-way clustered at the individual and judge-by-shift level in parentheses. All
specifications also control for court-by-time fixed effects and defendant race, gender, age, whether the defendant had
a prior offense in the past year, whether the defendant had a prior history of pre-trial crime in the past year, whether
the defendant had a prior history of failure to appear in the past year, the number of charged offenses, indicators for
crime type (drug, DUI, property, violent, or other), crime severity (felony or misdemeanor), and indicators for any
missing characteristics. The sample means of the dependent variables are reported in brackets. *** = significant at
1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.
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Online Appendix Table A3

First Stage Results by Case Characteristics

Crime Severity Crime Type Defendant Type
Misd. Felony Property Drug Violent Prior No Prior
(1) (2) (3) (4) (5) (6) (7)

Pre-trial Release 0.584∗∗∗ 0.204∗∗∗ 0.516∗∗∗ 0.364∗∗∗ 0.119∗∗∗ 0.452∗∗∗ 0.346∗∗∗

(0.042) (0.035) (0.046) (0.048) (0.041) (0.038) (0.028)
[0.721] [0.674] [0.607] [0.785] [0.685] [0.587] [0.587]

Court x Year FE Yes Yes Yes Yes Yes Yes Yes
Crime Controls Yes Yes Yes Yes Yes Yes Yes
Observations 128,409 127,844 55,432 83,277 74,193 87,424 168,829

Notes. This table reports the first stage relationship between pre-trial release and judge leniency in different
subsamples. The regressions are estimated on the sample as described in the notes to Table 1. Judge leniency is
estimated using data from other cases assigned to a bail judge in the same year, constructed separately by defendant
race, following the procedure described in Section II.B. All regressions include court-by-time fixed effects and baseline
controls for race, gender, age, whether the defendant had a prior offense in the past year, whether the defendant had
a prior history of pre-trial crime in the past year, whether the defendant had a prior history of failure to appear in
the past year, the number of charged offenses, indicators for crime type (drug, DUI, property, violent, and other),
crime severity (felony and misdemeanor), and indicators for any missing controls. The sample mean of the dependent
variable is reported in brackets. Robust standard errors two-way clustered at the individual and judge-by-shift level
are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant
at 10 percent level.
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Online Appendix Table A4

OLS Results

White Black Difference
Panel A: Rearrest for All Crimes (1) (2) (3)
Rearrest Prior to Disposition 0.181∗∗∗ 0.188∗∗∗ −0.007∗∗

(0.003) (0.002) (0.004)
[0.172] [0.182] –

Panel B: Rearrest by Crime Type
Rearrest for Drug Crime 0.097∗∗∗ 0.103∗∗∗ −0.006∗∗

(0.002) (0.002) (0.002)
[0.077] [0.081] –

Rearrest for Property Crime 0.067∗∗∗ 0.073∗∗∗ −0.006∗

(0.002) (0.002) (0.003)
[0.065] [0.068] –

Rearrest for Violent Crime 0.052∗∗∗ 0.063∗∗∗ −0.010∗∗∗

(0.002) (0.002) (0.002)
[0.047] [0.071] –

Observations 106,846 149,407 –

Notes. This table reports OLS results of racial bias in pre-trial release based on rearrest prior to case disposition.
The regressions are estimated on the sample as described in the notes to Table 1. Columns (1)–(2) report OLS
estimates of the impact of pre-trial release on the probability of pre-trial misconduct separately by race, while column
(3) reports the difference between the white and black OLS coefficients. Robust standard errors two-way clustered at
the individual and judge-by-shift level are reported in parentheses. The sample means of the dependent variables are
reported in brackets. All specifications control for court-by-time fixed effects and defendant race, gender, age, whether
the defendant had a prior offense in the past year, whether the defendant had a prior history of pre-trial crime in
the past year, whether the defendant had a prior history of failure to appear in the past year, the number of charged
offenses, indicators for crime type (drug, DUI, property, violent, or other), crime severity (felony or misdemeanor),
and indicators for any missing characteristics. *** = significant at 1 percent level, ** = significant at 5 percent level,
* = significant at 10 percent level.
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Online Appendix Table A5

Results for Other Definitions of Pre-Trial Misconduct

Philadelphia Miami Pooled
DIV DMTE DIV DMTE DIV DMTE

(1) (2) (3) (4) (5) (6)
Rearrest 0.045 0.078 0.263∗∗ 0.249∗∗ 0.222∗∗ 0.231∗∗

(0.183) (0.194) (0.115) (0.121) (0.101) (0.117)
[0.194] [0.194] [0.149] [0.149] [0.178] [0.178]

FTA −0.024 0.006 – – – –
(0.187) (0.202)
[0.204] [0.204] – – – –

FTA or Rearrest 0.008 0.042 0.263∗∗ 0.249∗∗ 0.208∗∗ 0.314∗

(0.209) (0.221) (0.115) (0.121) (0.102) (0.189)
[0.318] [0.318] [0.149] [0.149] [0.256] [0.256]

Observations 162,836 162,836 93,417 93,417 256,253 256,253

Notes. This table reports estimates of racial bias in pre-trial release based on rearrest prior to case disposition, FTA
(available only in Philadelphia), and either rearrest or FTA. Columns (1)–(2) report two-stage least squares estimates
of DIV and MTE estimates of DMTE for Philadelphia. Columns (3)–(4) report two-stage least squares estimates
of DIV and MTE estimates of DMTE for Miami. Columns (5)–(6) report two-stage least squares estimates of DIV

and MTE estimates of DMTE for the pooled sample. For IV specifications, robust standard errors two-way clustered
at the individual and judge-by-shift level reported in parentheses. For MTE specifications, bootstrapped standard
errors clustered at the judge-by-shift level are reported in parentheses. All specifications control for court-by-time
fixed effects and defendant race, gender, age, whether the defendant had a prior offense in the past year, whether the
defendant had a prior history of pre-trial crime in the past year, whether the defendant had a prior history of failure
to appear in the past year, the number of charged offenses, indicators for crime type (drug, DUI, property, violent,
or other), crime severity (felony or misdemeanor), and indicators for any missing characteristics. The sample means
of the dependent variables are reported in brackets. *** = significant at 1 percent level, ** = significant at 5 percent
level, * = significant at 10 percent level.
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Online Appendix Table A6

Social Cost of Crime Results

DIV DMTE Lower Upper
Estimate Estimate Bound Bound

(1) (2) (3) (4)
Rearrest for Robbery 0.028 0.035 $73,196 $333,701

(0.034) (0.037)
Rearrest for Assault 0.068 0.065 $41,046 $109,903

(0.050) (0.057)
Rearrest for Burglary 0.047 0.018 $50,291 $50,291

(0.048) (0.058)
Rearrest for Theft 0.118∗ 0.081 $9,598 $9,974

(0.062) (0.075)
Rearrest for Drug 0.047 0.097 $2,544 $2,544

(0.060) (0.067)
Rearrest for DUI 0.007 0.016 $25,842 $25,842

(0.009) (0.012)

Notes. This table reports the difference in two-stage least squares and marginal treatment effect
estimates of the impact of pre-trial release on the probability of pre-trial misconduct between white
and black defendants for different crimes. We exclude rearrest for crime types that are extremely
rare, e.g. murder and rape, and crime types that cannot be categorized into the listed categories,
e.g. disorderly conduct. The regressions are estimated on the sample as described in the notes
to Table 1. The dependent variable is listed in each row. In column (1), robust standard errors
two-way clustered at the individual and judge-by-shift level are reported in parentheses. In column
(2), bootstrap standard errors clustered at the judge-by-shift level are reported in parentheses. All
specifications control for court-by-time fixed effects and defendant race, gender, age, whether the
defendant had a prior offense in the past year, whether the defendant had a prior history of pre-trial
crime in the past year, whether the defendant had a prior history of failure to appear in the past
year, the number of charged offenses, indicators for crime type (drug, DUI, property, violent, or
other), crime severity (felony or misdemeanor), and indicators for any missing characteristics. ***
= significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent
level.
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Online Appendix Table A8

Mean Pre-Trial Release and Misconduct Rates by Judge and Defendant Race

Race of Judge
White Black

Panel A: Pre-Trial Release Rates (1) (2)
White Defendant Release Rate 0.557 0.552

(0.497) (0.497)
Black Defendant Release Rate 0.535 0.530

(0.499) (0.499)

Panel B: Pre-Trial Rearrest Rates
White Defendant Rearrest Rate 0.207 0.202

(0.405) (0.402)
Black Defendant Rearrest Rate 0.280 0.294

(0.449) (0.456)

Notes. This table presents mean rates of pre-trial release and pre-trial misconduct conditional on release by
defendant and judge race in Miami. The means are calculated using the Miami sample reported in Table 1. See text
for additional details.
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Online Appendix Table A9

p-values from Tests of Relative Racial Prejudice

p-Value
(1)

Pre-Trial Release 0.782
Pre-Trial Rearrest 0.580

Notes. This table replicates the Anwar and Fang (2006) test for pre-trial release rates and pre-trial misconduct
rates. This table presents bootstrapped p-values testing for relative racial bias. The null hypothesis is rejected if
white judges are more lenient on white defendants, and black judges are more lenient on black defendants.
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Online Appendix Table A10

Representativeness Statistics

E(x|Black)/E(x|White)
Panel A: Defendant Characteristics (1)
Male 1.026
Age at Bail Decision 0.978
Prior Offense in Past Year 1.072
Arrested on Bail in Past Year 1.048
Failed to Appear in Court in Past Year 1.028

Panel B: Charge Characteristics
Number of Offenses 1.200
Felony Offense 1.160
Misdemeanor Only 0.866
Any Drug Offense 1.077
Any DUI Offense 0.839
Any Violent Offense 1.260
Any Property Offense 0.983

Panel C: Outcomes
Rearrest Prior to Disposition 1.061
Drug Crime 1.059
Property Crime 1.044
Violent Crime 1.496
Failure to Appear in Court 0.983
Failure to Appear in Court or Rearrested 1.102

Observations 256,253

Notes. This table reports the mean of the variable listed in the row given the defendant is black, divided
by the mean of the variable listed in the row given the defendant is white. The sample is described in the
notes to Table 1.
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Online Appendix Figure A1

Judge Leniency by Race
This figure show the correlation between our residualized measure of judge leniency by defendant race over all

available years of data. We also plot the linear best fit line estimated using OLS.
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Panel A: First Quintile of Judge Leniency Panel B: Second Quintile of Judge Leniency
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Panel C: Third Quintile of Judge Leniency Panel D: Fourth Quintile of Judge Leniency
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Online Appendix Figure A2

Predicted and Actual Risk by Judge Leniency
These figures plot predicted pre-trial misconduct risk against actual pre-trial misconduct for different judge-leniency

quintiles. Predicted risk is calculated using only cases from the most lenient quintile of judges and the machine learning
algorithm described in Online Appendix F. See the text for additional details.
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Online Appendix Figure A3

Relationship between Predicted Risk and True Risk
This figure reports the distribution of the pre-trial misconduct risk and plots the predicted pre-trial misconduct

risk against actual pre-trial misconduct for the test sample. Predicted risk is calculated using the machine learning
algorithm described in Online Appendix F. The dashed line is the 45 degree line. See the text for additional details.
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Online Appendix Figure A4

Stereotyped and True Distribution of Risk for Black Defendants
This figure plots the true distribution of risk for black defendants alongside the perceived distribution of risk for

black defendants. The stereotyped beliefs are generated by a representativeness-based discounting model with θ = 1.9.
This value of θ rationalizes an average release rate of black defendants equal to 68.8 percent, the actual rate of release
in the data. See the text and Online Appendix F for additional details.
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Panel A: Rearrest for Drug Crime Panel B: Rearrest for Property Crime
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Panel C: Rearrest for Violent Crime
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Online Appendix Figure A5

Crime-Specific Predicted Risk Distributions by Race
These figures report the distribution of crime-specific risk separately by defendant race. Predicted risk is calculated

using the machine learning algorithm described in Online Appendix F. The solid line in each figure represents the
representativeness ratio for black versus white defendants. See the text for additional details.
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Online Appendix Figure A6

Predicted Risk Distribution by Hispanic and Black versus White
This figure reports the distribution of the risk of pre-trial misconduct separately by Hispanic, black, and white

defendants. Predicted risk is calculated using the machine learning algorithm described in Online Appendix F. The
dashed line represents the representativeness ratio for black versus white defendants and the solid line represents the
representativeness ratio for Hispanic versus white defendants. See the text for additional details.
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Online Appendix Figure A7

Probability of Release and Pre-trial Misconduct with Experience
This figure plots the relationship between judicial experience and both the residualized rate of pre-trial release and

the residualized rate of pre-trial crime conditional on release (i.e. the mistake rate). Pre-trial release and pre-trial
rearrest are both residualized using the full set of court-by-time fixed effects. See the text for additional details.
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Online Appendix B: Proofs of Consistency for IV and MTE Estimators

This appendix reviews our empirical test for racial bias before providing additional details and
proofs for both our IV and MTE estimation approaches. For completeness, we also include all
relevant information from the main text in this appendix.

B.1. Overview

Recall that the goal of our analysis is to empirically test for racial bias in bail setting using the
rate of pre-trial misconduct for white defendants and black defendants at the margin of release. Let
the true weighted average of treatment effects for defendants of race r at the margin of release for
judge j, αjr, for some weighting scheme, wj , across all bail judges, j = 1...J , be given by:

α∗,wr =
J∑
j=1

wjαjr(18)

=

J∑
j=1

wjtj∗r

where wj are non-negative weights which sum to one that will be discussed in further detail below.
Recall that, by definition, αjr = tj∗r . Intuitively, α∗,wr represents a weighted average of the treatment
effects for defendants of race r at the margin of release across all judges.

Following this notation, the true average level of racial bias among bail judges, D∗,w, for the
weighting scheme wj is given by:

D∗,w =
J∑
j=1

wj
(
tj∗W − t

j∗
B

)
(19)

=
J∑
j=1

wjtj∗W −
J∑
j=1

wjtj∗B

= α∗,wW − α∗,wB

From Equation (18), we can express D∗,w as a weighted average across all judges of the difference in
treatment effects for white defendants at the margin of release and black defendants at the margin
of release.

We develop two estimators for racial bias that use variation in the release tendencies of quasi-
randomly assigned bail judges to identify differences in pre-trial misconduct rates at the margin
of release. In theory, an estimator for D∗,w should satisfy three criteria: (1) rely on minimal
auxiliary assumptions to estimate judge-specific thresholds of release, tj∗r , (2) yield statistically
precise estimates of the average level of bias, D∗,w, and (3) use a policy-relevant weighting scheme,
wj . In practice, however, no single estimator can accomplish all three criteria in our setting. The
two-stage least squares IV estimator, for example, relies on relatively few auxiliary assumptions
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and provides statistically precise estimates by giving greater weight to more precise LATEs, but the
particular weighting of the pairwise LATEs may not always yield a policy-relevant estimate of racial
bias. In contrast, a fully non-parametric approach where one reports each pairwise LATE separately
and allows a researcher to choose a weighting scheme can yield a policy-relevant interpretation of
racial bias with minimal assumptions, but often comes at the cost of statistical precision since
any particular LATE is often estimated with considerable noise. The MTE framework developed
by Heckman and Vytlacil (1999, 2005) provides a third option, allowing a researcher to estimate
judge-specific treatment effects for white and black defendants at the margin of release and thus
choose a weighting scheme, but with estimation of racial bias for each judge, and relatedly statistical
precision, coming at the cost of additional auxiliary assumptions.

In this Online Appendix, we show that both IV and MTE estimators yield qualitatively similar
estimates of the average level of racial bias in our setting, suggesting that neither the choice of IV
weights nor the additional parametric assumptions required under our MTE approach greatly affect
our estimates. In contrast, we show that the fully non-parametric approach yields uninformative
estimates of the average level of racial bias due to very imprecise estimates of the individual pairwise
LATEs.

B.2. Instrumental Variables Framework

Our first estimator uses IV weights, defined as wj = λj , when estimating the weighted average
level of bias, D∗,w. Recall that λj are the standard IV weights defined in Imbens and Angrist
(1994). Our IV estimator allows us to estimate a weighted average of racial bias across bail judges
with relatively few auxiliary assumptions, but with the caveats that we cannot estimate judge-
specific treatment effects and the weighting scheme underlying the IV estimator may not be policy
relevant. If the IV weights are uncorrelated with the level of racial bias for a given judge, then
our IV estimator will estimate the average level of discrimination across all bail judges. If the IV
weights are correlated with the level of racial bias, however, then our IV estimator may under or
overestimate the average level of racial bias across all bail judges, but may still be of policy relevance
depending on the parameter of interest (e.g., an estimate of racial bias that puts more weight on
judges with higher caseloads).

In this subsection, we present a formal definition of the IV-weighted level of racial bias and
our IV estimator, provide proofs for consistency, discuss tests of the identifying assumptions, the
interpretation of the IV-weighted estimate, and the potential bias of our IV estimator from using
a discrete instrument. We then consider a re-weighting procedure that accounts for judge bias on
observable non-race characteristics.

20



1. Definition and Consistency of IV Estimator Let the IV-weighted level of racial bias, D∗,IV

be defined as:

D∗,IV =

J∑
j=1

wj
(
tj∗W − t

j∗
B

)
(20)

=
J∑
j=1

λj
(
tj∗W − t

j∗
B

)

where wj = λj , the instrumental variable weights defined in Imbens and Angrist (1994) and de-
scribed in the main text.

Following the definition in the main text, let our IV estimator be defined as:

DIV = αIVW − αIVB(21)

=

J∑
j=1

λjWα
j,j−1
W −

J∑
j=1

λjBα
j,j−1
B

where each pairwise LATE, αj,j−1
r , is again the average treatment effect of compliers between judges

j − 1 and j.

Building on the standard IV framework, we now establish the two conditions under which our
IV estimator for racial bias DIV provides a consistent estimate of the IV-weighted level of racial
bias, D∗,IV .

First Condition for Consistency: The first condition for our IV estimatorDIV to provide a consistent
estimate ofD∗,IV is that our judge leniency measure Zi is continuously distributed over some interval
[z, z̄]. Formally, as our instrument becomes continuous, for any judge j and any ε > 0, there exists
a judge k such that |zj − zk| < ε.

Proposition B.1. As Zi becomes continuously distributed, each race-specific IV estimate, αIVr ,
converges to a weighted average of treatment effects for defendants at the margin of release.

Proof of Proposition B.1. To see why this proposition holds, first define the treatment effect for
a defendant at the margin of release at zj as:

(22) αjr = αr(z = zj) = lim
dz→0

E[Yi(1)− Yi(0)|Releasedi(z)−Releasedi(z − dz) = 1]

With a continuous instrument Zi, Angrist, Graddy, and Imbens (2000) show that the IV estimate,
αIVr , converges to:

(23) αr =

∫
λr(z)αr(z)dz
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where the weights, λr(z) are given by:

(24) λr(z) =
∂Releasedr

∂z (z) ·
∫ z̄
z (y − E[z]) · fzr (y)dy∫ z̄

z
∂Releasedr

∂z (v) ·
∫ z̄
v (y − E[z]) · fzr (y)dydv

where ∂Releasedr
∂z is the derivative of the probability of release with respect to leniency and fzr

is the probability density function of leniency. If ∂Releasedr
∂z ≥ 0 for all z, then the weights are

nonnegative. Therefore, as Zi becomes continuously distributed, our race-specific IV estimate will
return a weighted average of treatment effects of defendants on the margin of release. �

Second Condition for Consistency: The second condition for our IV estimator DIV to provide a
consistent estimate of D∗,IV is that the weights λjr must be equal across race. Equal weights ensure
that the race-specific IV estimates from Equation (7) in the main text, αIVW and αIVB , provide the
same weighted averages of αj,j−1

W and αj,j−1
B . If the weights λjW = λjB = λj , our IV estimator can

then be rewritten as a simple weighted average of the difference in pairwise LATEs for white and
black defendants:

(25) DIV =
J∑
j=1

λj(αj,j−1
W − αj,j−1

B )

Proof of Consistency. We combine these two conditions to establish the consistency of our IV
estimator. Recall that our IV estimator DIV provides a consistent estimate of racial bias D∗,IV if
(1) Zi is continuous and (2) λjr is constant by race.

To begin, we write DIV as:

DIV = αIVW − αIVB(26)

=

J∑
j=1

λjWα
j,j−1
W −

J∑
j=1

λjBα
j,j−1
B

If λjr = λj , then:

(27) DIV =

J∑
j=1

λj
(
αj,j−1
W − αj,j−1

B

)

Following Proposition B.1, as Zi becomes continuously distributed, we can rewrite DIV as:

DIV =

∫
λ(z) (αW (z)− αB(z)) dz(28)

= D∗,IV

Therefore, in the limit, DIV estimates a weighted average of differences in treatment effects for
defendants at the margin of release, and therefore provides a consistent estimate of D∗,IV . �
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2. Empirical Implementation

a. Testing the equal weights assumption: A key assumption for the consistency of our IV
estimator is that the IV weights are the same across race. Following Cornelissen et al. (2016), we
calculate white and black IV weights for each judge-by-year cell by replacing the terms in Equation
(24) with their sample analogues. Noting that our instrument is linear by construction and, as a
result, that ∂Releasedr(z)

∂z (z) = c, we drop the term ∂Releasedr(z)
∂z (z) = c, as this appears in both the

numerator and denominator of Equation (24). We then use kernel density methods to retrieve an
estimate f̂zr , which is the density of leniency for race r. With this estimate of the density of leniency
for race r, we can plug in the sample analogue of E[z] and use numerical integration to estimate the
remaining terms and estimate IV weights by race for each point in the distribution.

One implication of the equal weights assumption is that the distributions of black and white
IV weights over the distribution of judge leniency are statistically identical. To implement this
test, Online Appendix Figure B1 plots the IV weights for each judge-by-year cell, the level of our
variation, by race. The distributions of black and white IV weights are visually indistinguishable
from each other and a Kolmogorov–Smirnov test cannot reject the hypothesis that the two estimated
distributions are drawn from the same continuous distribution (p = .431).

A second implication of the equal weights assumption is that the relationship between the black
IV weights and the white IV weights should fit a 45-degree line up to sampling error. Online
Appendix Figure B2 plots the black IV weights and the white IV weights for each judge-by-year
cell, where we discretize the continuous weights to retrieve an estimate of the weights for each
judge-by-year cell and then normalize the weights so that the weights sum to one (in the continuous
version the weights integrate to one). The black and white IV weights for each judge-by-year cell
are highly correlated across race. To formally test for violations of the equal weights assumption,
we regress each black IV weight for each judge-by-year cell on the white IV weight for the same cell.
This regression yields a coefficient on the white IV weight equal to 1.028 with a standard error of
0.033. Thus, both tests suggest that our assumption of equal IV weights by race is satisfied in the
data.

b. Understanding the IV weights: We now investigate the relationship between IV weights and
judge characteristics to better understand the economic interpretation of an IV-weighted estimate of
racial bias. Online Appendix Table B1 presents OLS estimates of IV weights in each judge-by-year
cell on observable judge-by-year characteristics separately by race. The correlation between the IV
weights and both average leniency and whether the judge is a minority is statistically zero in both
the white and black distribution, with only a weak correlation between the IV weights and judge
experience in a given year. Conversely, the IV weights are positively correlated with the number
of cases in a judge-by-year cell and a judge being from Philadelphia (where each judge-by-year cell
has more observations). These results suggest that the additional precision in our IV regressions
comes, at least in part, from placing more weight on judge-by-year cells with more observations.
The IV weights are also positively correlated with judge-by-year specific estimates of racial bias
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(estimated using the MTE approach discussed in Section B.4 below), although not differentially by
defendant race. The positive correlation between the IV weights and the judge-by-year estimates
of bias implies that the IV-weighted estimate of racial bias will be larger than an equal-weighted
estimate of racial bias. All of our IV results should be interpreted with these correlations in mind.

c. Bounding the maximum bias of the IV estimator with a discrete instrument: Our approach
assumes continuity of the instrument Zi. If the instrument is discrete, we can characterize the
maximum potential bias of our IV estimator DIV relative to D∗,IV , e.g. “infra-marginality bias.”

Proposition B.2. If the instrumental variable weights are equal by race, the maximum bias of our
IV estimator DIV from D∗,IV is given by max

j
(λj)(αmax − αmin), where αmax is the largest

treatment effect among compliers, αmin is the smallest treatment effect among compliers, and
λj is given by:

(29) λj =
(zj − zj−1) ·

∑J
l=jπ

l(zl − E[Z])∑J
m=1(zj − zj−1) ·

∑J
l=mπ

l(zl − E[Z])

where πl is the probability of being assigned to judge j.

Proof of Proposition B.2. To prove that this proposition holds, we proceed in five steps. First,
we show that D∗,IV is equal to DIV plus a bias term, which we refer to as “infra-marginality bias.”
Second, we derive an upper bound for the bias term by replacing αj,j−1

W with its minimum possible
value for every judge j, and we derive a lower bound by replacing αj,j−1

B with its maximum value
for every j. Third, we show that the upper bound and lower bound of DIV both converge to D∗,IV

as Zi becomes continuously distributed. Fourth, we develop a formula for the maximum potential
bias with a discrete instrument using the derived upper and lower bounds, and provide intuition
for how we derive this estimation bias. Fifth, we show how to empirically estimate the maximum
potential bias in the case of a discrete instrument.

Recall that under our theory model, compliers for judge j and j − 1 are individuals such that
tj−1∗
r < E[αi|ri] ≤ tj∗r . Under this definition of compliers, we know that:

(30) αj,j−1
r ∈ (tj−1∗

r , tj∗r ]
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Note that we can rewrite D∗,IV as:

D∗,IV =

J∑
j=1

λj
(
tj∗W − t

j∗
B

)

=
J∑
j=1

λj
(
αj,j−1
W − αj,j−1

B

)
+

J∑
j=1

λj
(
tj∗W − α

j,j−1
W

)
+

J∑
j=1

λj
(
αj,j−1
B − tj∗B

)

= DIV +

J∑
j=1

λj
(
tj∗W − α

j,j−1
W

)
+

J∑
j=1

λj
(
αj,j−1
B − tj∗B

)
︸ ︷︷ ︸

infra-marginality bias

(31)

The second line follows from adding and subtracting
∑J

j=1 λ
jαj,j−1

W and
∑J

j=1 λ
jαj,j−1

B to D∗,IV

and rearranging terms. The third line follows from assuming equal IV weights by race. Equation
(31) shows that D∗,IV is equal to DIV plus a bias term, which we refer to as “infra-marginality
bias.”

We will now derive an upper bound forD∗,IV . First, note that Equation (30) implies αj,j−1
B ≤ tj∗B .

Therefore
∑J

j=1 λ
j
(
αj,j−1
B − tj∗B

)
≤ 0, given λj ≥ 0 for all j. We can drop this term from Equation

(31) to obtain an upper bound on D∗,IV :

D∗,IV ≤ DIV +
J∑
j=1

λj
(
tj∗W − α

j,j−1
W

)

< DIV +

J∑
j=1

λj
(
tj∗W − t

j−1∗
W

)
(32)

where the second line follows from Equation (30) (tj−1∗
W < αj,j−1

W ).
Using similar logic, we can also derive a lower bound for D∗,IV . Equation (30) implies tj∗W ≥

αj,j−1
W . Therefore

∑J
j=1 λ

j
(
tj∗W − α

j,j−1
W

)
≥ 0, given λj ≥ 0 for all j. We can drop this term from

Equation (31) to obtain a lower bound on D∗,IV :

D∗,IV ≥ DIV +
J∑
j=1

λj
(
αj,j−1
B − tj∗B

)

= DIV −
J∑
j=1

λj
(
tj∗B − α

j,j−1
B

)

> DIV −
J∑
j=1

λj
(
tj∗B − t

j−1∗
B

)
(33)

where again, the last line follows from Equation (30) (tj−1∗
B < αj,j−1

B ).
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We can now bound D∗,IV using Equation (33) and Equation (32):

(34) DIV −
J∑
j=1

λj
(
tj∗B − t

j−1∗
B

)
< D∗,IV < DIV +

J∑
j=1

λj
(
tj∗W − t

j−1∗
W

)
It is straightforward to see that the infra-marginality bias goes to zero as Zi becomes continuous.
Given that λj are non-negative weights which sum to one,

∑J
j=1 λ

j
(
tj∗r − tj−1∗

r

)
≤ maxj(t

j∗
r −tj−1∗

r )

(i.e. the average is less than the maximum). Therefore, if Zi becomes continuous, then tj∗r −tj−1∗
r →

0 for all j, and so infra-marginality bias shrinks to zero. Intuitively, at the limit, every complier is
at the margin, and so there is no infra-marginality bias. As a result, DIV converges to D∗,IV as Zi
becomes continuous.

Note that tj∗r −tj−1∗
r is positive for all j, implying

∑J
j=1 λ

j
(
tj∗r − tj−1∗

r

)
≤ maxj(λ

j)
∑J

j=1

(
tj∗r − tj−1∗

r

)
,

where maxj(λ
j) is the maximum weight across all judges. Given the recursive structure of

∑J
j=1

(
tj∗r − tj−1∗

r

)
:

(35) max
j

(λj)
J∑
j=1

(
tj∗r − tj−1∗

r

)
= max

j
(λj)(tJ∗r − t0∗r )

Note that tJ∗r = αmaxr (i.e. the largest treatment effect is associated with the most lenient judge)
and t0∗r = αminr (i.e. the smallest treatment effect is associated with the most strict judge). There-
fore, letting αmax and αmin equal the maximum treatment effect and minimum treatment effect
respectively across races, yields:

(36) DIV −max
j

(λj)(αmax − αmin) < D∗,IV < DIV + max
j

(λj)(αmax − αmin)

which proves Proposition B.2. In other words, the maximum bias of our IV estimator DIV from
D∗,IV is given by max

j
(λj)(αmax − αmin). �

Next, we simplify these bounds to retrieve estimable bounds. Note that αmax ≤ 1 and αmin ≥ 0

in theory, which implies (αmax − αmin) ≤ 1. Therefore, the bounds in Equation (36) can be re-
written as:

(37) DIV −max
j

(λj) < D∗,IV < DIV + max
j

(λj)

Rearranging terms yields:

(38) −max
j

(λj) < D∗,IV −DIV < max
j

(λj)

Under this worst-case assumption, the maximum bias of our IV estimator DIV from D∗,IV is given
by max

j
(λj).

To understand the intuition of our maximum bias formula, note that under Proposition B.2,
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the maximum bias of DIV relative to D∗,IV decreases as (1) the heterogeneity in treatment effects
among compliers decreases (αmax → αmin) and (2) the maximum of the judge weights decreases
(maxj(λ

j) → 0), as would occur when there are more judges distributed over the range of the
instrument. If treatment effects are homogeneous among compliers such that αmax = αmin, our IV
estimator DIV continues to provide a consistent estimate of D∗,IV . In practice, we calculate the
maximum bias of our estimator under the worst-case assumption of treatment effect heterogeneity
(i.e. αmax − αmin = 1, the maximum possible value). Because the weights λj are identified in our
data, the maximum bias due to infra-marginality concerns can be conservatively estimated to be
equal to maxj(λ

j).
In general, the IV weights, λj , will not be equal across judges. In particular, the weights depend

partially on the share of compliers between any two adjacent judges. For example, if there are more
infra-marginal defendants for lenient judges, then lenient judges will be given more weight in the
estimation of racial bias. However, our bounding procedure of the maximum bias does not rely on
any assumption about equal weights across judges. For example, consider an extreme case where
although there are many judges, defendants are only infra-marginal to the most-strict and second
most-strict judge. Then, the entire share of compliers will be defendants who are detained by the
most-strict judge and released by the second most-strict judge. Therefore, the pairwise LATE for
the most-strict judge and the second most-strict judge will receive the entire weight in estimating
the effect of release on the probability of pre-trial misconduct. In this case, we would conclude that
the maximum bias of our estimator is equal to one, and therefore, we would be unable to provide
informative bounds on the true level of racial bias.

We can illustrate this point with a simple two judge case where both judges use the same
release thresholds for both white and black defendants, tj∗W = tj∗B , such that there is no racial bias,
D∗,IV = 0. Suppose that the more lenient judge releases defendants with an expected pre-trial
misconduct rate of less than 20 percent, while the more strict judge releases defendants with an
expected pre-trial misconduct rate of less than 10 percent. Then, the race-specific LATEs estimated
using our IV strategy are the average treatment effects of all defendants with expected misconduct
rates between 10 and 20 percent. Within this range of compliers, suppose that all black defendants
have expected rates of pre-trial misconduct of 10 percent, while all white defendants have expected
rates of pre-trial misconduct of 20 percent. Then, our IV estimator will yield a LATE for whites
(αIVW = 0.2) that is larger in magnitude than the LATE for blacks (αIVB = 0.1), causing us to
estimate DIV = 0.1 > 0. Our IV estimator would thus lead us to incorrectly conclude that there
was racial bias. A similar exercise can be used to show that we may find DIV = 0 even if D∗,IV > 0.
Under the worst-case scenario where we assume the maximum heterogeneity in treatment effects
(αmax − αmin = 1), the maximum infra-marginality bias is maxj(λ

j) = 1 because 100 percent of
compliers fall within the two judges. In this case, infra-marginality bias makes our IV estimator
uninformative on the true level of racial bias. However, using the same logic, it is straightforward
to show that the magnitude of this infra-marginality bias decreases when there are many judges
because the share of compliers within any two judges decreases, thus decreasing maxj(λ

j).
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We can now illustrate how we empirically estimate the maximum potential bias of our IV
estimator from D∗,IV using the formula in Proposition B.2. Again, because we do not observe
αmax − αmin, we take the most conservative approach and assume that this value is equal to 1.
Imbens and Angrist (1994) show that the instrumental variables weights, λj , for a discrete multi-
valued instrument are given by the following formula:

(39) λj =
(Pr(Released|zj)− Pr(Released|zj−1)) ·

∑J
l=j π

l(g(zl)− E[g(Z)])∑J
m=1(Pr(Released|zm)− Pr(Released|zm−1)) ·

∑J
l=m π

l(g(zl)− E[g(Z)])

where πl is the probability a defendant is assigned to judge l, g(zl) is a function of the instrument,
and Pr(Released|zj) if the probability a defendant is released if assigned to judge j. While λj is
not indexed by r, we estimate the weights completely separately by race. To proceed, we residualize
both the endogenous variable Released and the judge leniency instrument using all exogenous
regressors. An instrumental variables regression utilizing residualized variables yields a numerically
identical estimate as the specification in the main text (Evdokimov and Kolesár 2018). To estimate
the weight λj we simply replace each expression in Equation (39) with the empirical counterpart.
Formally:

(40) Pr(Released|zj)− Pr(Released|zj−1) = E[R̈|z̈j ]− E[R̈|z̈j−1]

where R̈ is Released residualized by the exogenous regressors and z̈j is the residualized value of
the instrument. Since we use residualized judge leniency as the instrument we replace g(z̈l) = z̈l.
Lastly, we replace πj and E[Z] with their empirical counterparts:

(41) π̂j =
N∑
i=1

1{Z̈i = z̈j}
N

(42) E[Z] =
1

N

N∑
i=1

Z̈i

Plugging these quantities into the formula for the weights yields an estimate of the weight attached
to each pairwise LATE. We then take the maximum of our weights and interpret this estimate as the
maximum potential bias between our IV estimator and D∗,IV . This procedure yields a maximum
bias of 0.011 or 1.1 percentage points.

From Equation (37), we know:

D∗,IV < DIV + max
j

(λj) = DIV + 0.011

D∗,IV > DIV −max
j

(λj) = DIV − 0.011

Therefore, in our setting, D∗,IV is bounded within 1.1 percentage points of our IV estimate for
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racial bias. �

3. Re-weighting Procedure to Allow Judge Preferences for Non-Race Characteristics In this
subsection, we show that a re-weighting procedure using our IV estimator can be used to estimate
direct racial bias (i.e. racial bias which cannot be explained by the composition of crimes). To
begin, let the weights for all white defendants be equal to 1. We construct the weights for a black
defendant with observables equal to Xi = x as:

(43) Ψ(x) =
Pr(W |x)Pr(B)

Pr(B|x)Pr(W )

where Pr(W |x) is the probability of being white given observables Xi = x, Pr(B|x) is the prob-
ability of being black given observables Xi = x, Pr(B) is the unconditional probability of being
black, and Pr(W ) is the unconditional probability of being white.

Define the covariate-specific LATE as:

(44) αj,j−1
r (x) = E[Yi(1)− Yi(0)|Ri(zj)−Ri(zj−1) = 1|ri = r,Xi = x]

As noted by Fröhlich (2007) and discussed in Angrist and Fernández-Val (2013), the uncondi-
tional LATE can be expressed as:

(45) αj,j−1
r =

∑
x∈X

αj,j−1
r (x)

Pr(Released|zj , x, r)− Pr(Released|zj−1, x, r)

Pr(Released|zj , r)− Pr(Released|zj−1, r)
P (x|r)

We assume:

(46)
Pr(Released|zj , x, r)− Pr(Released|zj−1, x, r)

Pr(Released|zj , r)− Pr(Released|zj−1, r)
= ξ(x)

In words, while the first stage may vary based on covariates, it varies in the same way for white
and black defendants. Therefore, in the re-weighted sample, αj,j−1

B is given by:

αj,j−1
B =

∑
x∈X

αj,j−1
B (x)ξ(x)Pr(x|B)Ψ(x)

=
∑
x∈X

αj,j−1
B (x)ξ(x)Pr(x|B)

Pr(W |x)Pr(B)

Pr(B|x)Pr(W )

=
∑
x∈X

αj,j−1
B (x)ξ(x)

Pr(B|x)Pr(x)

Pr(B)

Pr(W |x)Pr(B)

Pr(B|x)Pr(W )

=
∑
x∈X

αj,j−1
B (x)ξ(x)

Pr(W |x)Pr(x)

Pr(W )

=
∑
x∈X

αj,j−1
B (x)ξ(x)Pr(x|W )
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where line 2 follows by plugging in the formula for Ψ(x) and lines 3 and 5 follow from Bayes’ rule.
These steps closely follow DiNardo, Fortin, and Lemieux (1996), although our parameter of interest
is a treatment effect rather than a distribution. Given that the weights for all white defendants are
equal to 1, DIV is given by:

(47) DIV =

J∑
j=1

λj

(∑
x∈X

ξ(x)Pr(x|W )
(
αj,j−1
W (x)− αj,j−1

B (x)
))

�

B.3. Non-Parametric Pairwise LATE Framework

A second approach to estimating the average level of racial bias is to estimate each pairwise LATE
separately and then impose the preferred weighting scheme across these non-parametric estimates.
We consider, for example, an approach that places equal weight on each judge to estimate the average
level of racial bias across judges all judges in the sample. This fully non-parametric approach can
yield a policy-relevant interpretation of racial bias with minimal assumptions, but often comes at
the cost of statistical precision since any particular LATE is often estimated with considerable noise.

In this subsection, we present a formal definition of the equal-weighted level of bias and our
non-parametric estimator, provide proofs for consistency, and evaluate the feasibility of this non-
parametric approach using Monte Carlo simulations.

1. Definition and Consistency of Pairwise LATE Estimator Let the equal-weighted LATE
estimate of racial bias based on the non-parametric pairwise estimates, D∗,PW be defined as:

D∗,PW =

J∑
j=1

wj
(
tj∗W − t

j∗
B

)
(48)

=
J∑
j=1

1

J

(
tj∗W − t

j∗
B

)

where wj = 1
J , such that D∗,PW can be interpreted as the average level of racial bias across judges—

an estimate with clear economic interpretation.
Let the equal-weighted pairwise LATE estimator of racial bias, DPW , be defined as:

(49) DPW =
J∑
j=1

1

J
(αj,j−1

W − αj,j−1
B )

where each pairwise LATE, αj,j−1
r , is again the average treatment effect of compliers between judges

j − 1 and j.

Conditions for Consistency: Following the proofs for the IV estimator, DPW provides a consistent
estimate of racial bias D∗,PW if (1) Zi is continuous and (2) wj is constant by race, which is satisfied
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because the weights are chosen ex post to be equal (wj = 1
J ).

2. Empirical Implementation

a. Estimating the pairwise LATEs: We estimate non-parametric LATEs using the following
Wald estimator for each pair of judges j and judge j − 1:

(50) α̂j,j−1
r =

E[Yi|Zi = zj , r]− E[Yi|Zi = zj−1, r]

E[Releasedi|Zi = zj , r]− E[Releasedi|Zi = zj−1, r]

where E[Yi|Zi = zj , r] is the probability a defendant of race r assigned to judge j is rearrested
and E[Releasedi|Zi = zj , r] is the probability a defendant of race r assigned to judge j is released.
Following the above discussion, our equal-weighted estimate of racial bias is equal to the simple
difference between the average estimated pairwise LATE for white defendants and the average
estimated pairwise LATE for black defendants.

b. Monte Carlo simulation: As discussed above, a fully non-parametric approach can yield
a policy-relevant interpretation of racial bias with minimal assumptions, but often comes at the
cost of statistical precision since any particular LATE is often estimated with considerable noise.
We therefore begin by examining the performance of our non-parametric estimator using Monte
Carlo simulations. Specifically, we create a simulated dataset with 170 judges, where each judge is
assigned 500 cases with black defendants and 500 cases with white defendants. The latent risk of
rearrest before disposition for each defendant is drawn from a uniform distribution between 0 and 1.
Each judge releases defendants if and only if the risk of rearrest is less than his or her race-specific
threshold. In the simulated data, each judge’s threshold for white defendants is set to match the
distribution of judge leniencies observed in the true data. For each judge, we then impose a 10
percentage point higher threshold for black defendants, so that the “true” level of racial bias in the
simulated data is exactly equal to 0.100. The probability that a released defendant is rearrested
(Yi = 1) conditional on release is equal to the risk of the released defendant.

In each draw of the simulated data, we estimate non-parametric LATEs using the Wald estima-
tor described above. Our estimate of racial bias in each draw of the simulated data is equal to the
difference between the average release threshold for white defendants and the average release thresh-
old for black defendants. We repeat this entire process 500 times and plot the resulting estimates
of the average level of racial bias across all bail judges.

Panel A of Online Appendix Figure B3 presents the results from this Monte Carlo exercise. The
average level of racial bias across all simulations is equal to 0.125, close to the true level. However,
the variance of the estimates is extremely large, with nearly 20 percent of the simulations yielding an
estimate of racial bias that is greater than one in absolute value. The high variance in the estimates
stems from weak first stages between judges that are very close in the leniency distribution. We
conclude from this exercise that a fully non-parametric approach yields uninformative estimates of
average racial bias in our setting, and do not explore this approach further.1

1In unreported results, we also examine the performance of a non-parametric estimator where estimates of αj
r
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B.4. Marginal Treatment Effects Framework

Our final estimator uses the MTE framework developed by Heckman and Vytlacil (1999, 2005)
to estimate the average level of bias, D∗,w, where we impose equal weights for each judge. The MTE
framework allows us to estimate judge-specific treatment effects for white and black defendants at
the margin of release and choose a weighting scheme across all judges, but with the identification and
estimation of the judge-specific estimates, tj∗r , coming at the cost of additional auxiliary assumptions.

In this subsection, we present a formal definition of the equal-weighted level of bias and our
MTE estimator, provide details on the mapping of the MTE framework to our test of racial bias,
provide proofs for consistency, and discuss the details of the empirical implementation and tests of
the parametric assumptions.

1. Definition and Consistency of MTE Estimator

Following the discussion of the equal-weighted non-parametric estimator, let the equal-weighted
MTE estimate of racial bias, D∗,MTE be defined as:

D∗,MTE =
J∑
j=1

wj
(
tj∗W − t

j∗
B

)
(51)

=

J∑
j=1

1

J

(
tj∗W − t

j∗
B

)

where wj = 1
J , such that D∗,MTE can again be interpreted as the average level of racial bias across

judges.
Let our equal-weighted MTE estimator of racial bias, DMTE , be defined as:

(52) DMTE =

J∑
j=1

1

J

(
MTEW (pjW )−MTEB(pjB)

)

where pjr is the probability judge j releases a defendant of race r (i.e. judge j’s propensity score)
and MTEr(p

j
r) is the estimated MTE at the propensity score for judge j calculated separately for

each defendant of race r.

2. MTE Framework:

To formally map our model of racial bias from the main text to the MTE framework developed
by Heckman and Vytlacil (2005), we first characterize judge j’s pre-trial release decision as:

(53) Releasedi(zj , r) = 1{E[αi|r] ≤ tjr(Vi)}

are formed using a Wald estimator between judge j to judge j − k, where k > 1. We find that increasing k decreases
variance in the simulated estimates, but increases estimation bias, as judges further away in the distribution are used
to estimate judge j’s threshold. Even with relatively large k, we find the MTE procedure described in Section B.4 is
more precise than the pairwise LATE procedure.
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where Releasedi(zj , r) indicates the probability defendant i of race r is released by judge j, and αi,
and tjr(Vi) are defined as in the main text. Vytlacil (2002) shows that under our assumptions of
independence and monotonicity, the treatment decision can be written as a latent-index model of
the following form:

Releasedi(zj , r) = 1{Ui,r ≤ pjr}

where Ui,r ∈ [0, 1] by construction. In this latent-index model, defendants with Ui,r ≤ pjr are
released, defendants with Ui,r > pjr are detained, and defendants with Ui,r = pjr are on the margin
of release for judge j.

Following Heckman and Vytlacil (2005), we define the race-specific marginal treatment effect as
the treatment effect for defendants on the margin of release:

(54) MTEr(u) = E[αi|r, Ui,r = u]

where E[αi|r, Ui,r = pjr] denotes the treatment effect for a defendant of race r who is on the margin
of release to a judge with propensity score equal to pjr. For simplicity, we denote judge j’s propensity
score for defendants of race r as pjr.

Using the above framework, we can now describe how the race-specific MTEs defined by Equation
(54) allow us estimate racial bias for each judge in our sample. First, recall that the estimand of
interest is the treatment effect of pre-trial release for white and black defendants at the margin of
release:

(55) αjr = E[αi|r,E[αi|r] = tj∗r ]

Because E[αi|r] = tj∗r can be replaced with the equivalent condition, Ui,r = pjr, both of which state
defendant i is marginal to judge j, we can equate αjr to the MTE function at pjr:

αjr = E[αi|r,E[αi|r] = tj∗r ](56)

= E[αi|r, Ui,r = pjr]

= MTEr(p
j
r)

Equation (56) shows that we can use the race-specific MTEs to identify the race-specific treat-
ment effect of each judge, αjr, and as a result, race-specific thresholds of release, tj∗r . We can
then estimate the level of racial bias for each judge j, tj∗W − t

j∗
B . To see this, let judge j have a

propensity score to release white defendants equal to pjW and a propensity to release black defen-
dants equal to pjB. Given Equation (56), the level of racial bias for judge j is therefore equal to
MTEW (pjW )−MTEB(pjB). From these judge-specific estimates of racial bias, we can then ex post
impose equal weights across judges to estimate DMTE , the average level of racial bias.

Conditions for Consistency: In addition to the assumptions required for a causal interpretation of
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the IV estimator (existence, exclusion restriction, and monotonicity), our MTE estimator DMTE

provides a consistent estimate of D∗,MTE if the race-specific MTEs are identified over the entire
support of the propensity score calculated using variation in Zi.

If Zi is continuous, the local instrumental variables (LIV) estimand provides a consistent estimate
of the MTE over the support of the propensity score with no additional assumptions (Heckman and
Vytlacil 2005; Cornelissen et al. 2016). With a discrete instrument, however, our MTE estimator is
only consistent under additional functional form restrictions that allow us to interpolate the MTEs
between the values of the propensity score we observe in the data. In our MTE framework, if our
specification of the MTE is flexible enough to capture the true shape of the MTE function, then
there will be no infra-marginality bias. If the specification is too restrictive, then there may be
misspecification bias in estimating the MTE.

Recall that our goal is to construct the average level of racial bias across judges:

D∗,MTE =

J∑
j=1

1

J

(
tj∗W − t

j∗
B

)

=
J∑
j=1

1

J

(
αjW − α

j
B

)
(57)

With a continuous instrument, αjW and αjB are identified by evaluating MTE(pjW ) and MTE(pjB).
Heckman and Vytlacil (1999) show local instrumental variables (LIV) can be used to identify
the MTE non-parametrically. With a discrete instrument, however, MTE(pjr) is no longer non-
parametrically identified.

Following Heckman and Vytlacil (2005) and Doyle (2007), we use a local polynomial function and
information from the observed values of the propensity score to estimate the MTE curve over the
full support of the propensity score. Specifically, we use a local quadratic estimator to approximate
E[Yi|pjr], and then estimate the MTE as the numerical derivative of the local quadratic function. In
this estimation, we specify a bandwidth, and therefore use information from all judges in a given
bandwidth to estimate the threshold for a given judge.

Let the estimated MTE be denoted by ˆMTE(pjr). We can express our MTE estimator DMTE

as:

DMTE =
J∑
j=1

1

J

(
ˆMTE(pjW )− ˆMTE(pjB)

)
︸ ︷︷ ︸

Estimated MTE

+(58)

J∑
j=1

1

J

(
MTE(pjW )− ˆMTE(pjW )

)
+

J∑
j=1

1

J

(
ˆMTE(pjB)−MTE(pjB)

)
︸ ︷︷ ︸

infra-marginality bias

In this case, infra-marginality bias arises because we allow for the possibility that the local quadratic
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function does not provide enough flexibility to accurately capture the shape of the MTE. If we
assume our specification of the MTE is flexible enough to capture the shape of the MTE, then
E[ ˆMTE(pjr)] = MTE(pjr), indicating there is no infra-marginality bias. Therefore, if we correctly
specify the form of the MTE function, then DMTE provides a consistent estimate of D∗,MTE :

DMTE =
J∑
j=1

1

J

(
MTEW (pjW )−MTEB(pjB)

)
(59)

=
J∑
j=1

1

J

(
tj∗W − t

j∗
B

)
= D∗,MTE

3. Empirical Implementation

a. Estimating the MTE curve: We estimate DMTE using a two-step procedure. First, we
estimate the entire distribution of MTEs. To estimate each race-specific MTE, we estimate the
derivative of our outcome measure (i.e. rearrest before case disposition) with respect to variation
in the propensity score provided by our instrument (i.e. variation in the predicted probability of
being released from the variation in judge leniency) separately for white and black defendants:

MTEW (pjW ) =
∂

∂pjW
E(Ÿi|pjW ,W )(60)

MTEB(pjB) =
∂

∂pjB
E(Ÿi|pjB, B)(61)

where pjr is the propensity score for release for judge j and defendant race r and Ÿi is rearrest
residualized on all observables: an exhaustive set of court-by-time fixed effects as well as our baseline
crime and defendant controls: gender, age, whether the defendant had a prior offense in the past year,
whether the defendant had a prior history of pre-trial crime in the past year, whether the defendant
had a prior history of failure to appear in the past year, the number of charged offenses, indicators
for crime type (drug, DUI, property, violent, or other), crime severity (felony or misdemeanor), and
indicators for any missing characteristics.

Following Heckman, Urzua, and Vytlacil (2006) and Doyle (2007), we begin by residualizing
our measure of pre-trial misconduct, pre-trial release, and judge leniency using the full set of fixed
effects and observables. We can then calculate the race-specific propensity score using a regression
of the residualized release variable on our residualized measure of judge leniency, capturing only the
variation in pre-trial release due to variation in the instrument.2 Next, we compute the numerical

2A common approach in the MTE literature is to exploit variation in the propensity score that arises from
covariates. Many treatment effect parameters, such as the average treatment effect, rely on having wide support of
the propensity score. However, in practice, it is difficult to identify such strong instruments, so researchers rely on
utilizing variation driven by observables. In our setting, we rely on the continuity of the propensity score to estimate
the MTE, but require no assumptions concerning the range of the propensity score. In particular, the treatment

35



derivative of a smoothed function relating residualized pre-trial misconduct to the race-specific
propensity score. Specifically, we estimate the relationship between the residualized misconduct
variable and the race-specific propensity score using a local quadratic estimator. We then compute
the numerical derivative of the local quadratic estimator for each race separately to obtain the
race-specific MTEs. In unreported results, we also find nearly identical results using alternative
estimation procedures, such as the global polynomials used in Kowalski (2016).

Second, we use the race-specific MTE distributions to calculate the level of racial bias for each
judge j. We aggregate these judge-specific estimates of racial bias to calculate an equal-weighted
estimate of racial bias:

DMTE =

J∑
j=1

1

J

(
MTEW (pjW )−MTEB(pjB)

)
(62)

We calculate standard errors of this equal-weighted estimate by bootstrapping this two-step proce-
dure 500 times at the judge-by-shift level.

b. Monte Carlo simulation: To examine the performance of our MTE estimator, we again use
a Monte Carlo simulation. Following the simulation used to test the non-parametric estimator,
we create a simulated dataset with 170 judges, where each judge is assigned 500 cases with black
defendants and 500 cases with white defendants. The latent risk of rearrest before disposition
for each defendant is drawn from a uniform distribution between 0 and 1. Each judge releases
defendants if and only if the risk of rearrest is less than his or her race-specific threshold. In the
simulated data, each judge’s threshold for white defendants is set to match the distribution of judge
leniencies observed in the true data. For each judge, we then impose a 10 percentage point higher
threshold for black defendants, so that the “true” level of racial bias in the simulated data is exactly
equal to 0.100. The probability that a released defendant is rearrested (Yi = 1) conditional on
release is equal to the risk of the released defendant.

In each draw of the simulated data, we use the MTE estimation procedure outlined above to
estimate both the race-specific MTEs and the average level of racial bias when each judge is weighted
equally. We repeat this entire process 500 times and plot the resulting estimates of the average level
of racial bias across all bail judges.

Panel B of Online Appendix Figure B3 presents the results from this Monte Carlo exercise.
The average level of racial bias across all simulations is equal to 0.090 with a standard deviation of
only 0.051. In addition, the 10th percentile of estimates is equal to 0.036 and the 90th percentile
equal to 0.143. These results stand in sharp contrast to the statistically uninformative results from
our non-parametric estimator and suggest that, in practice, our MTE estimator is likely to yield
statistically precise estimates of the average level of racial bias across all bail judges.

c. Testing the MTE functional form assumption: Following Cornelissen et al. (2016), we test
whether the MTE is misspecified by constructing a non-parametric IV estimate of racial bias by

effects we are interested in are identified by variation in judge leniency by definition.
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taking the correct weighted average of the MTE. Specifically, we re-estimate the IV weights from
Equation (24), but substitute p(zj) in for zj , given that we estimate the MTE curve over the
distribution of the propensity score, and not the distribution of leniency. We denote these weights
ωIVr . As shown in Heckman and Vytlacil (2005), the IV estimate, αIVr is related to the MTEr by:

(63) αIVr =

∫
MTEr(u)ωIVr (u)du

Intuitively, the MTE approach relies on identifying the MTE curve. To do so, we must impose
structure on the relationship between the propensity score and the outcome of interest. This implies
we also impose structure on the derivative of this relationship, which is equal to the MTE curve.
If the structure does not bias our estimate of the MTE curve, then we should be able to construct
the non-parametric IV by taking the weighted average of the MTE curve shown in Equation (63).
However, if the estimated MTE is biased, then in general, the weighted average of the MTE will not
be equal to the non-parametric IV estimate. We find that our MTE weighted by the IV weights is
very close to the non-parametric IV estimate of racial bias. Specifically, the white IV estimate for
the effect of release on rearrest is equal to 0.236, while the MTE weighted by the white IV weights
yields an estimate of 0.261. Similarly, the black IV estimate for the effect of release on rearrest is
equal to 0.014, while the MTE weighted by the black IV weights yields an estimate of 0.021. These
results indicate that our MTE is likely to be correctly specified.
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Online Appendix Table B1: Correlation between IV Weights and Observables

White IV Black IV
Weights x 100 Weights x 100

(1) (2)
Discrimination 0.424∗∗∗ 0.518∗∗∗

(0.066) (0.062)
Philadelphia 0.117∗∗∗ 0.104∗∗∗

(0.016) (0.016)
Case Load (100s) 0.004∗∗∗ 0.006∗∗∗

(0.001) (0.001)
Average Leniency 0.044 0.000

(0.055) (0.054)
Experience −0.000 0.002∗

(0.001) (0.001)
Minority Judge 0.003 0.004

(0.008) (0.008)

Observations 552 552

Notes. This table estimates the relationship between instrumental variable weights assigned to a given judge-by-
year cell on observables of the judge-by-year cell. To ease readability, the coefficients are multiplied by a 100. Column
1 presents results for IV weights calculated for white defendants. Column 2 presents results for IV weights calculated
for black defendants. To compute the weight assigned to a judge-by-year cell, we first compute the continuous weights
by constructing sample analogues to the terms which appear in Equation (24) following the procedure described in
Cornelissen et al. (2016) and Appendix B. To move from the continuous weights to a weight associated with a given
judge, we compute the average leniency of each judge-by-year cell in the data. We then compute the weight associated
with the average leniency of the judge-by-year cell using the results from the continuous weights estimation. We divide
the resulting weights by the sum total to ensure the discretized weights sum to one.
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Online Appendix Figure B1: Distribution of IV Weights by Race Across Judge
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Note: This figure plots the instrumental variables weights over the distribution of judge leniency for both black
and white defendants. To compute the instrumental variable weights, we first compute the continuous weights by
constructing sample analogues to the terms which appear in Equation (24) following the procedure described in
Cornelissen et al. (2016) and Online Appendix B. To move from the continuous weights to a weight associated with
a given judge-by-year, we compute the average leniency of each judge-by-year cell in the data. We then compute the
weight associated with the average leniency of the judge-by-year cell using the results from the continuous weights
estimation. We divide the resulting weights by the sum total to ensure the discretized weights sum to one.
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Online Appendix Figure B2: Correlation Between White IV Weights and Black IV
Weights
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Note: This figure plots the instrumental variables weight assigned to judge j in year t in the white leniency distribution
vs. the instrumental variables weight assigned to judge j in year t in the black distribution. To compute the weight
assigned to a judge-by-year cell, we first compute the continuous weights by constructing sample analogues to the
terms which appear in Equation (24) following the procedure described in Cornelissen et al. (2016) and Online
Appendix B. To move from the continuous weights to a weight associated with a given judge, we compute the average
leniency of each judge-by-year cell in the data. We then compute the weight associated with the average leniency of
the judge-by-year cell using the results from the continuous weights estimation. We divide the resulting weights by
the sum total to ensure the discretized weights sum to one.

40



Online Appendix Figure B3: Monte Carlo Simulations of Racial Bias Estimators

Panel A: Non-Parametric Pairwise LATEs Panel B: Semi-Parametric MTEs
0

.0
5

.1
.1

5
.2

Fr
ac

tio
n 

of
 S

im
ul

at
io

ns

-1.5 -1 -.5 0 .5 1 1.5
Estimate of Racial Bias

0
.0

5
.1

.1
5

.2
Fr

ac
tio

n 
of

 S
im

ul
at

io
ns

-1.5 -1 -.5 0 .5 1 1.5
Estimate of Racial Bias

Note: This figure reports the distribution of estimated racial bias using a race-specific judge leniency measure in
simulated data with a “true” level of racial bias of 0.100. The simulated data include 170 judges, where each judge
is assigned 500 black defendants and 500 white defendants. Defendant risk in the simulated data is drawn from a
uniform distribution between 0 and 1. Judges release defendants if the risk is less than a judge-specific threshold,
where the distribution of judge-specific threshold matches the empirical distribution of judge leniency. For each judge,
we impose a 10 percentage point higher threshold for black defendants, so that the “true” level of racial bias in the
simulated data is equal to 0.100. Panel A presents estimates from a non-parametric LATE procedure, where we form
the Wald estimator between judge j and judge j − 1 to estimate the release threshold for judge j. Panel B presents
estimates from the MTE procedure. The estimate of racial bias is equal to the average estimated release threshold
for white defendants minus the average estimated release threshold for black defendants across judges.
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Online Appendix C: Simple Graphical Example

In this Online Appendix, we use a series of simple graphical examples to illustrate how a judge
IV estimator for racial bias improves upon the standard OLS estimator. We first consider the OLS
estimator in settings with either a single race-neutral judge or a single racially biased judge, showing
that the standard estimator suffers from infra-marginality bias whenever there are differences in the
risk distributions of black and white defendants. We then use a simple two-judge example to
illustrate how a judge IV estimator can alleviate the infra-marginality bias in both settings.

C.1. OLS Estimator

To illustrate the potential for infra-marginality bias when using a standard OLS estimator, we
begin with the case of a single race-neutral judge. The judge perfectly observes risk and chooses
the same threshold for white and black defendants, but the distributions of risk differ by defendant
race. Panel A of Online Appendix Figure C1 illustrates such a case, where we assume that white
defendants have more mass in the left tail of the risk distribution, i.e. that whites are, on average,
less risky than blacks. Letting the vertical lines denote the judge’s release threshold, standard
OLS estimates of αW and αB measure the average risk of released defendants for white and black
defendants, respectively. In the case illustrated in Panel A, the standard OLS estimator indicates
that the judge is biased against white defendants, when, in reality, the judge is race-neutral.

To further illustrate this point, Panel B of Online Appendix Figure C1 considers the case of
a single judge that is racially biased against black defendants. Once again, the distributions of
risk differ by defendant race, but now the judge chooses different thresholds for white and black
defendants. In the case illustrated in Panel B, white and black defendants have the exact same
expected risk conditional on release. As a result, the standard OLS estimator indicates that the
judge is race-neutral, when, in reality, the judge is biased against black defendants. Following the
same logic, we could choose risk distributions and release thresholds such that the OLS estimator
indicates racial bias against white defendants or racial bias against black defendants. In other words,
the OLS estimator is uninformative about the extent of racial bias in bail decisions without strong
assumptions about differences in the underlying distributions of risk by defendant race.

C.2. IV Estimators

We now illustrate how a judge IV estimator for racial bias can potentially solve this infra-
marginality problem by focusing the analysis on defendants at the margin of release. We use a
simple two-judge example to illustrate the intuition behind our approach, while maintaining our
assumption that judges perfectly observe risk and that the distributions of risk differ by defendant
race. Throughout, we assume that judge 2 is more lenient than judge 1.

Panel C of Online Appendix Figure C1 considers the case where both judges are race-neutral,
such that both judges use the same thresholds of release for white and black defendants. In this case,
an IV estimator using judge leniency as an instrument for pre-trial release will estimate the average

42



risk for defendants who are released by the lenient judge but detained by the strict judge (i.e. the
average risk of compliers), αIVW and αIVB . When the two judges are “close enough” in leniency, the IV
estimator for racial bias will approximately estimate the risk of marginally released black defendants
and marginally released white defendants. Intuitively, the IV estimator measures misconduct risk
only for defendants near the margin of release, essentially ignoring the risk of defendants who are
infra-marginal to the judge thresholds. As our measure of judge leniency becomes more continuous,
our IV estimator will consistently estimate racial bias as the difference between αIVW and αIVB . The
IV estimator will therefore indicate that marginal black and marginal white defendants have similar
misconduct rates, allowing us to correctly conclude that the judges are race-neutral.

To further illustrate this point, Panel D of Online Appendix Figure C1 considers the case
where both judges are racially biased against black defendants, such that both judges have higher
thresholds of release for white defendants relative to black defendants. Following the same logic as
above, the IV estimator measures the pre-trial misconduct risk of marginally released white and
black defendants, αIVW and αIVB , so long as the two judges are “close enough” in leniency. The
IV estimator will therefore indicate that marginal black defendants are lower risk than marginal
white defendants, allowing us to correctly conclude that judges are racially biased against black
defendants.
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Online Appendix Figure C1: Infra-marginality Bias with OLS and Judge IV Estima-
tors

Panel A: OLS Estimator with Race-Neutral Judge Panel B: OLS Estimator with Biased Judge
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Note: These figures plot hypothetical risk distributions for white and black defendants. Panel A illustrates the OLS
estimator with a race-neutral judge that chooses the same threshold for release for white and black defendants. Panel
B illustrates the OLS estimator with a racially biased judge that chooses a higher threshold for release for white
defendants compared to black defendants. Panel C illustrates the judge IV estimator with two race-neutral judges.
Panel D illustrates the judge IV estimator with two racially biased judges.
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Online Appendix D: Data Appendix

Judge Leniency: We calculate judge leniency as the leave-out mean residualized pre-trial release
decisions of the assigned judge within a bail year. We use the residual pre-trial release decision
after removing court-by-time fixed effects. In our main results, we define pre-trial release based on
whether a defendant was ever released prior to case disposition.

Release on Recognizance: An indicator for whether the defendant was released on recognizance
(ROR), where the defendant secures release on the promise to return to court for his next scheduled
hearing. ROR is used for defendants who show minimal risk of flight, no history of failure to appear
for court proceedings, and pose no apparent threat of harm to the public.

Non-Monetary Bail w/Conditions: An indicator for whether the defendant was released on non-
monetary bail with conditions, also known as conditional release. Non-monetary conditions include
monitoring, supervision, halfway houses, and treatments of various sorts, among other options.

Monetary Bail: An indicator for whether the defendant was assigned monetary bail. Under mon-
etary bail, a defendant is generally required to post a bail payment to secure release, typically 10
percent of the bail amount, which can be posted directly by the defendant or by sureties such as
bail bondsmen.

Bail Amount: Assigned monetary bail amount in thousands, set equal to zero for defendants who
receive non-monetary bail with conditions or ROR.

Race: Indicator for whether the defendant is black (versus non-black).

Hispanic: We match the surnames in our data to census genealogical records of surnames. If
the probability a given surname is Hispanic is greater than 70 percent, we label the defendant as
Hispanic.

Prior Offense in Past Year: An indicator for whether the defendant had been charged for a prior
offense in the past year of the bail hearing within the same county, set to missing for defendants
who we cannot observe for a full year prior to their bail hearing.

Arrested on Bail in Past Year: An indicator for whether the defendant had been arrested while
out on bail in the past year within the same county, set to missing for defendants who we cannot
observe for a full year prior to their bail hearing.

Failed to Appear in Court in Past Year: An indicator for whether the defendant failed to appear
in court while out on bail in the past year within the same county, set to missing for defendants
who we cannot observe for a full year prior to their bail hearing. This variable is only available in
Philadelphia.
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Number of Offenses: Total number of charged offenses.

Felony Offense: An indicator for whether the defendant is charged with a felony offense.

Misdemeanor Offense: An indicator for whether the defendant is charged with only misdemeanor
offenses.

Any Drug Offense: An indicator for whether the defendant is charged with a drug offense.

Any DUI Offense: An indicator for whether the defendant is charged with a DUI offense.

Any Violent Offense: An indicator for whether the defendant is charged with a violent offense.

Any Property Offense: An indicator for whether the defendant is charged with a property offense.

Rearrest Prior to Disposition: An indicator for whether the defendant was rearrested for a new
crime prior to case disposition.

Failure to Appear in Court: An indicator for whether the defendant failed to appear for a required
court appearance, as proxied by the issuance of a bench warrant. This outcome is only available in
Philadelphia.

Failure to Appear in Court or Rearrest Prior to Disposition: An indicator for whether a defen-
dant failed to appear in court or was rearrested in Philadelphia, and for whether a defendant was
rearrested in Miami.

Judge Race: We collect information on judge race from court directories and conversations with
court officials. All judges in Philadelphia are white. Information on judge race in Miami is missing
for two of the 170 judges in our sample.

Judge Experience: We use historical court records back to 1999 to compute experience, which we
define as the difference between bail year and start year (earliest 1999). In our sample, years of
experience range from zero to 15 years.
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Online Appendix E: Institutional Details

The institutional details described in this Online Appendix follow directly from Dobbie et al.
(2018). Like the federal government, both Pennsylvania and Florida grant a constitutional right to
some form of bail for most defendants. For instance, Article I, §14 of the Pennsylvania Constitution
states that “[a]ll prisoners shall be bailable by sufficient sureties, unless for capital offenses or for
offenses for which the maximum sentence is life imprisonment or unless no condition or combination
of conditions other than imprisonment will reasonably assure the safety of any person and the
community....” Article I, §14 of the Florida Constitution states that “[u]nless charged with a capital
offense or an offense punishable by life imprisonment...every person charged with a crime...shall be
entitled to pretrial release on reasonable conditions.”

Philadelphia County: In Philadelphia County, defendants are brought to one of six police stations
immediately following their arrest, where they are interviewed by the city’s Pre-Trial Services Bail
Unit. The Philadelphia Bail Unit interviews all adults charged with offenses in Philadelphia through
videoconference, collecting information on each defendant’s charge severity, personal and financial
history, family or community ties, and criminal history. The Bail Unit then uses this information to
generate a release recommendation based on a four-by-ten grid of bail guidelines that is presented
to the bail judge at the bail hearing. However, these bail guidelines are only followed by the bail
judge about half the time, with judges often imposing monetary bail instead of the recommended
non-monetary options (Shubik-Richards and Stemen 2010).

After the Pre-Trial Services interview is completed and the charges are approved by the Philadel-
phia District Attorney’s Office, defendants are brought in for a bail hearing. Bail hearings are
conducted through videoconference by the bail judge on duty, with representatives from both the
district attorney and local public defender’s offices (or private defense counsel) present. However,
while a defense attorney is present at the bail hearing, there is usually no real opportunity for
defendants to speak with the attorney prior to the hearing. At the hearing itself, the bail judge
reads the charges against the defendant, informs the defendant of his right to counsel, sets bail after
hearing from representatives from the prosecutor’s office and the defendant’s counsel, and schedules
the next court date. After the bail hearing, the defendant has an opportunity to post bail, secure
counsel, and notify others of the arrest. If the defendant is unable to post bail, he is detained but
has the opportunity to petition for a bail modification in subsequent court proceedings.

Under the Pennsylvania Rules of Criminal Procedure, “the bail authority shall consider all
available information as that information is relevant to the defendant’s appearance or nonappearance
at subsequent proceedings, or compliance or noncompliance with the conditions of the bail bond,”
including information such as the nature of the offense, the defendant’s employment status and
relationships, and whether the defendant has a record of bail violations or flight. Pa. R. Crim. P.
523. In setting monetary bail, “[t]he amount of the monetary condition shall not be greater than
is necessary to reasonably ensure the defendant’s appearance and compliance with the conditions
of the bail bond.” Pa. R. Crim. P. 524. Under Pa. R. Crim. 526, a required condition of any
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bail bond is that the defendant “refrain from criminal activity.” In Philadelphia, it is well known
that bail judges consider the risk of new crime when setting bail (see Goldkamp and Gottfredson
1988), and in fact, the Philadelphia bail guidelines are designed to “reduce the risk of releasing
dangerous defendants into the community while ensuring that defendants who pose minimal risk
are not confined to prison to await trial.”3

Miami-Dade County: The Miami-Dade bail system follows a similar procedure, with one important
exception. As opposed to Philadelphia where all defendants are required to have a bail hearing, most
defendants in Miami-Dade can be immediately released following arrest and booking by posting an
amount designated by a standard bail schedule. The standard bail schedule ranks offenses according
to their seriousness and assigns an amount of bond that must be posted before release. Critics
have argued that this kind of standardized bail schedule discriminates against poor defendants by
setting a fixed price for release according to the charged offense rather than taking into account a
defendant’s ability to pay, or propensity to flee or commit a new crime. Approximately 30 percent of
all defendants in Miami-Dade are released prior to a bail hearing through the standard bail schedule,
with the other 70 percent of defendants attending a bail hearing (Goldkamp and Gottfredson 1988).

If a defendant is unable to post the standard bail amount in Miami-Dade, there is a bail hearing
within 24 hours of arrest where defendants can argue for a reduced bail amount. Miami-Dade
conducts separate daily hearings for felony and misdemeanor cases through videoconference by the
bail judge on duty. At the bail hearing, the court will determine whether or not there is sufficient
probable cause to detain the arrestee and if so, the appropriate bail conditions. The standard bail
amount may be lowered, raised, or remain the same as the standard bail amount depending on the
case situation and the arguments made by defense counsel and the prosecutor. While monetary
bail amounts at this stage often follow the standard bail schedule, the choice between monetary
versus non-monetary bail conditions varies widely across judges in Miami-Dade (Goldkamp and
Gottfredson 1988).

Under the Florida Rules of Criminal Procedure, “[t]he judicial officer shall impose the first ...
conditions of release that will reasonably protect the community from risk of physical harm to
persons, assure the presence of the accused at trial, or assure the integrity of the judicial process.”
Fl. R. Crim. P. 3.131. As noted in Florida’s bail statute, “[i]t is the intent of the Legislature that the
primary consideration be the protection of the community from risk of physical harm to persons.”
Fla. Stat. Ann. §907.041(1).

Institutional Features Relevant to the Empirical Design: Our empirical strategy exploits variation in
the pre-trial release tendencies of the assigned bail judge. There are three features of the Philadel-
phia and Miami-Dade bail systems that make them an appropriate setting for our research design.
First, there are multiple bail judges serving simultaneously, allowing us to measure variation in bail
decisions across judges. At any point in time, Philadelphia has six bail judges that only make bail
decisions. In Miami-Dade, weekday cases are handled by a single bail judge, but weekend cases are

3See https://www.courts.phila.gov/pdf/notices/2012/6-12-12-Notice-to-Bar-Proposed-Bail-Guidelines.pdf.
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handled by approximately 60 different judges on a rotating basis. These weekend bail judges are
trial court judges from the misdemeanor and felony courts in Miami-Dade that assist the bail court
with weekend cases.

Second, the assignment of judges is based on rotation systems, providing quasi-random variation
in which bail judge a defendant is assigned to. In Philadelphia, the six bail judges serve rotating
eight-hour shifts in order to balance caseloads. Three judges serve together every five days, with
one bail judge serving the morning shift (7:30AM–3:30PM), another serving the afternoon shift
(3:30PM–11:30PM), and the final judge serving the night shift (11:30PM–7:30AM). In Miami-Dade,
the weekend bail judges rotate through the felony and misdemeanor bail hearings each weekend to
ensure balanced caseloads during the year. Every Saturday and Sunday beginning at 9:00AM, one
judge works the misdemeanor shift and another judge works the felony shift.

Third, there is very limited scope for influencing which bail judge will hear the case, as most
individuals are brought for a bail hearing shortly following the arrest. In Philadelphia, all adults
arrested and charged with a felony or misdemeanor appear before a bail judge for a formal bail
hearing, which is usually scheduled within 24 hours of arrest. A defendant is automatically assigned
to the bail judge on duty. There is also limited room for influencing which bail judge will hear the
case in Miami-Dade, as arrested felony and misdemeanor defendants are brought in for their hearing
within 24 hours following arrest to the bail judge on duty.
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Online Appendix F: Model of Stereotypes

In this Online Appendix, we consider whether a model of stereotypes can generate the pre-trial
release rates we observe in our data. To do so, we assume a functional form for how judges form
perceptions of risk and ask if this model can match the patterns we observe in the data.

F.1. Calculating Predicted Risk:

We begin by estimating predicted risk using a machine learning algorithm that efficiently uses
all observable crime and defendant characteristics. In short, we use a randomly-selected subset of
the data to train the model using all individuals released on bail. In training the model, we must
choose the shrinkage, the number of trees, and the depth of each tree. Following common practice,
we choose the smallest shrinkage parameter (i.e. 0.005) that allows the training process to run in a
reasonable time frame. We use a 5-fold cross validation on the training sample in order to choose
the optimal number of trees for the predictions. The interaction depth is set to 5, which allows each
tree to use at most 5 variables. Using the optimal number of trees from the cross validation step,
predicted probabilities are then created for the full sample.

Following the construction of the continuous predicted risk variable, we split the predicted risk
measure into 100 equal sized bins. One potential concern with this procedure is that observably
high-risk defendants may actually be low-risk based on variables observed by the judges, but not
by the econometrician. To better understand the importance of this issue, we follow Kleinberg et
al. (2018) and plot the relationship between predicted risk and true risk in the test sample. We
find that predicted risk is a strong predictor of true risk, indicating that the defendants released
by judges do not have unusual unobservables which make their outcomes systematically diverge
from what is expected (see Online Appendix Figure A3). This is true for both white and black
defendants. Therefore, we interpret the predicted distributions of risk based on observables as the
true distributions of risk throughout.

F.2. No Stereotypes Benchmark:

Following the construction of our predicted risk measure, we compute the fraction of black
defendants that would be released if they were treated the same as white defendants. This calculation
will serve as a benchmark for the stereotype model discussed below. To make this benchmark
calculation, we assume judges accurately predict the risk of white defendants so that we can generate
a relationship between release and risk, which we can then apply to black defendants. Under this
assumption, we find that the implied release rate for black defendants is 70.8 percent if they were
treated the same as white defendants. This implied release rate is lower than the true release rate
of white defendants (71.1 percent), but higher than the true release rate for black defendants (68.8
percent), consistent with our main finding that judges over-detain black defendants.
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F.3. Model with Stereotypes:

We can now consider whether a simple model of stereotypes can rationalize the difference in true
release rates. Following Bordalo et al. (2016), we assume judges form beliefs about the distribution
of risk through a representativeness-based discounting model. Basically, the weight attached to a
given risk type t is increasing in the representativeness of t. Formally, let πt,r be the probability
that a defendant of race r is in risk category t ∈ {1, ..., 100}. In our data, a defendant with t = 1

has a 2.7 percent expected probability of being rearrested before disposition while a defendant with
t = 100 has a 74.5 percent probability of being rearrested before disposition.

Let πstt,r be the stereotyped belief that a defendant of race r is in risk category t. The stereotyped
beliefs for black defendants, πstt,B, is given by:

(64) πstt,B = πt,B

(
πt,B
πt,W

)θ
∑

s∈T πs,B

(
πs,B
πs,W

)θ
where θ captures the extent to which representativeness distorts beliefs and the representativeness
ratio, πt,B

πt,W
, is equal to the probability a defendant is black given risk category t divided by the

probability a defendant is white given risk category t. Recall from Figure III that representativeness
of blacks is strictly increasing in risk. Therefore, a representativeness-based discounting model will
over-weight the right tail of risk for black defendants.

To compute the stereotyped distribution, we first assume a value of θ, and then compute πt,r
for every risk category t and race r. We can then compute πstt,B by plugging in the values for πt,r
and the assumed value of θ into Equation (64).

From the distribution of πstt,B, we compute the implied average release rate by multiplying the
fraction of defendants believed to be at a given risk level by the probability of release for that risk
level and summing up over all risk levels. Formally,

(65) E[Releasedi = 1|ri = B] =
100∑
s=1

πsts,BE[Releasedi = 1|t = s, ri = B]

In the equation above, we cannot compute E[Releasedi = 1|t = s, ri = B] given that we
explicitly assume judges make prediction errors for black defendants. That is, we do not know
at what rate judges would release black defendants with risk equal to s, given that judges do
not accurately predict risk for black defendants. However, in a stereotypes model, we can replace
E[Releasedi = 1|t = s, ri = B] = E[Releasedi = 1|t = s, ri = W ] (i.e. given that if there is no
taste-based discrimination, then conditional on perceived risk, the release rate will be equal between
races). Under our additional assumption that judges accurately predict the risk of whites, we can
estimate E[Releasedi = 1|t = s, ri = W ] for all s. Therefore, we can compute every value on the
right hand side of Equation (65), from which we can back out the average release rate for black
defendants from the stereotyped distribution.
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We find that θ = 1.9 rationalizes the average release rate for blacks we observe in the data
(68.8 percent). That is, if judges use a representativeness-based discounting model with θ = 1.9

to form perceptions of the risk distribution, we would expect judges to release 68.8 percent of all
black defendants. To understand how far these beliefs are from the true distribution of risk, we
plot the stereotyped distribution for blacks with θ = 1.9 alongside the true distribution of risk for
blacks in Online Appendix Figure A4. The average risk in the stereotyped distribution is about 5.4
percentage points greater than the mean in the true distribution of risk.
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